Search results
Results from the WOW.Com Content Network
Uncertainty quantification (UQ) is the science of quantitative characterization and estimation of uncertainties in both computational and real world applications. It tries to determine how likely certain outcomes are if some aspects of the system are not exactly known.
In artificial intelligence, symbolic artificial intelligence (also known as classical artificial intelligence or logic-based artificial intelligence) [1] [2] is the term for the collection of all methods in artificial intelligence research that are based on high-level symbolic (human-readable) representations of problems, logic and search. [3]
It uses a belief structure to model an assessment with uncertainty, a belief decision matrix to represent an MCDA problem under uncertainty, evidential reasoning algorithms [5] to aggregate criteria for generating distributed assessments, and the concepts of the belief and plausibility functions to generate a utility interval for measuring the ...
Conformal prediction (CP) is a machine learning framework for uncertainty quantification that produces statistically valid prediction regions (prediction intervals) for any underlying point predictor (whether statistical, machine, or deep learning) only assuming exchangeability of the data. CP works by computing nonconformity scores on ...
Identify the model output to be analysed (the target of interest should ideally have a direct relation to the problem tackled by the model). Run the model a number of times using some design of experiments, [15] dictated by the method of choice and the input uncertainty. Using the resulting model outputs, calculate the sensitivity measures of ...
In physical experiments uncertainty analysis, or experimental uncertainty assessment, deals with assessing the uncertainty in a measurement.An experiment designed to determine an effect, demonstrate a law, or estimate the numerical value of a physical variable will be affected by errors due to instrumentation, methodology, presence of confounding effects and so on.
Wald's Maximin model is the main instrument used by these methods. The principal difference between the Maximin model employed by info-gap and the various Maximin models employed by robust optimization methods is in the manner in which the total region of uncertainty is incorporated in the robustness model. Info-gap takes a local approach that ...
Analytica is a visual software developed by Lumina Decision Systems for creating, analyzing and communicating quantitative decision models. [1] It combines hierarchical influence diagrams for visual creation and view of models, intelligent arrays for working with multidimensional data, Monte Carlo simulation for analyzing risk and uncertainty, and optimization, including linear and nonlinear ...