enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Half-carry flag - Wikipedia

    en.wikipedia.org/wiki/Half-carry_flag

    The Auxiliary Carry flag is set (to 1) if during an "add" operation there is a carry from the low nibble (lowest four bits) to the high nibble (upper four bits), or a borrow from the high nibble to the low nibble, in the low-order 8-bit portion, during a subtraction. Otherwise, if no such carry or borrow occurs, the flag is cleared or "reset ...

  3. MCS-51 - Wikipedia

    en.wikipedia.org/wiki/MCS-51

    [3] [49] It can perform as an 8-bit 8051, has 24-bit linear addressing, an 8-bit ALU, 8-bit instructions, 16-bit instructions, a limited set of 32-bit instructions, 16 8-bit registers, 16 16-bit registers (8 16-bit registers which do not share space with any 8-bit registers, and 8 16-bit registers which contain 2 8-bit registers per 16-bit ...

  4. Overflow flag - Wikipedia

    en.wikipedia.org/wiki/Overflow_flag

    An example, suppose we add 127 and 127 using 8-bit registers. 127+127 is 254, but using 8-bit arithmetic the result would be 1111 1110 binary, which is the two's complement encoding of −2, a negative number. A negative sum of positive operands (or vice versa) is an overflow.

  5. Simple-As-Possible computer - Wikipedia

    en.wikipedia.org/wiki/Simple-As-Possible_computer

    An arithmetic logic unit (ALU) capable of adding and subtracting 8-bit 2's complement integers from registers A and B. This module also has a flags register with two possible flags (Z and C). Z stands for "zero," and is activated if the ALU outputs zero. C stands for "carry," and is activated if the ALU produces a carry-out bit.

  6. Carry flag - Wikipedia

    en.wikipedia.org/wiki/Carry_flag

    The result should be 510 which is the 9-bit value 111111110 in binary. The 8 least significant bits always stored in the register would be 11111110 binary (254 decimal) but since there is carry out of bit 7 (the eight bit), the carry is set, indicating that the result needs 9 bits. The valid 9-bit result is the concatenation of the carry flag ...

  7. Fletcher's checksum - Wikipedia

    en.wikipedia.org/wiki/Fletcher's_checksum

    When the data word is divided into 8-bit blocks, as in the example above, two 8-bit sums result and are combined into a 16-bit Fletcher checksum. Usually, the second sum will be multiplied by 256 and added to the simple checksum, effectively stacking the sums side-by-side in a 16-bit word with the simple checksum at the least significant end.

  8. Serial binary adder - Wikipedia

    en.wikipedia.org/wiki/Serial_binary_adder

    The serial binary adder or bit-serial adder is a digital circuit that performs binary addition bit by bit. The serial full adder has three single-bit inputs for the numbers to be added and the carry in. There are two single-bit outputs for the sum and carry out. The carry-in signal is the previously calculated carry-out signal.

  9. Carry-save adder - Wikipedia

    en.wikipedia.org/wiki/Carry-save_adder

    A carry-save adder [1] [2] [nb 1] is a type of digital adder, used to efficiently compute the sum of three or more binary numbers. It differs from other digital adders in that it outputs two (or more) numbers, and the answer of the original summation can be achieved by adding these outputs together.