Search results
Results from the WOW.Com Content Network
tert-Butyl alcohol is the simplest tertiary alcohol, with a formula of (CH 3) 3 COH (sometimes represented as t-BuOH). Its isomers are 1-butanol, isobutanol, and butan-2-ol. tert-Butyl alcohol is a colorless solid, which melts near room temperature and has a camphor-like odor. It is miscible with water, ethanol and diethyl ether.
Butanol (also called butyl alcohol) is a four-carbon alcohol with a formula of C 4 H 9 O H, which occurs in five isomeric structures (four structural isomers), from a straight-chain primary alcohol to a branched-chain tertiary alcohol; [1] all are a butyl or isobutyl group linked to a hydroxyl group (sometimes represented as BuOH, sec-BuOH, i-BuOH, and t-BuOH).
1-Butanol, also known as butan-1-ol or n-butanol, is a primary alcohol with the chemical formula C 4 H 9 OH and a linear structure. Isomers of 1-butanol are isobutanol , butan-2-ol and tert -butanol .
Tertiary alcohols react with strong acids to generate carbocations. The reaction is related to their dehydration, e.g. isobutylene from tert-butyl alcohol. A special kind of dehydration reaction involves triphenylmethanol and especially its amine-substituted derivatives. When treated with acid, these alcohols lose water to give stable ...
Like other butanols, butan-2-ol has low acute toxicity. The LD 50 is 4400 mg/kg (rat, oral). [6]Several explosions have been reported [7] [8] [9] during the conventional distillation of 2-butanol, apparently due to the buildup of peroxides with the boiling point higher than that of pure alcohol (and therefore concentrating in the still pot during distillation).
This image of a simple structural formula is ineligible for copyright and therefore in the public domain, because it consists entirely of information that is common property and contains no original authorship.
Isobutanol (IUPAC nomenclature: 2-methylpropan-1-ol) is an organic compound with the formula (CH 3) 2 CHCH 2 OH (sometimes represented as i-BuOH).This colorless, flammable liquid with a characteristic smell is mainly used as a solvent either directly or as its esters.
The effect of the tert-butyl group on the progress of a chemical reaction is called the Thorpe–Ingold effect illustrated in the Diels-Alder reaction below. Compared to a hydrogen substituent, the tert-butyl substituent accelerates the reaction rate by a factor of 240. [2] tert-Butyl effect. The tert-butyl effect is an example of steric hindrance.