Search results
Results from the WOW.Com Content Network
An example of how indifference curves are obtained as the level curves of a utility function. A graph of indifference curves for several utility levels of an individual consumer is called an indifference map. Points yielding different utility levels are each associated with distinct indifference curves and these indifference curves on the ...
The indifference curves are L-shaped and their corners are determined by the weights. E.g., for the function min ( x 1 / 2 , x 2 / 3 ) {\displaystyle \min(x_{1}/2,x_{2}/3)} , the corners of the indifferent curves are at ( 2 t , 3 t ) {\displaystyle (2t,3t)} where t ∈ [ 0 , ∞ ) {\displaystyle t\in [0,\infty )} .
The indifference curves are straight lines (when there are two goods) or hyperplanes (when there are more goods). Each demand curve (demand as a function of price) is a step function : the consumer wants to buy zero units of a good whose utility/price ratio is below the maximum, and wants to buy as many units as possible of a good whose utility ...
A community indifference curve is an illustration of different combinations of commodity quantities that would bring a whole community the same level of utility. The model can be used to describe any community, such as a town or an entire nation.
Whether indifference curves are primitive or derivable from utility functions; and; Whether indifference curves are convex. Assumptions are also made of a more technical nature, e.g. non-reversibility, saturation, etc. The pursuit of rigour is not always conducive to intelligibility. In this article indifference curves will be treated as primitive.
An example indifference curve is shown below: Each indifference curve is a set of points, each representing a combination of quantities of two goods or services, all of which combinations the consumer is equally satisfied with. The further a curve is from the origin, the greater is the level of utility.
Utility can be represented through sets of indifference curve, which are level curves of the function itself and which plot the combination of commodities that an individual would accept to maintain a given level of satisfaction. Combining indifference curves with budget constraints allows for individual demand curves derivation.
A set of convex-shaped indifference curves displays convex preferences: Given a convex indifference curve containing the set of all bundles (of two or more goods) that are all viewed as equally desired, the set of all goods bundles that are viewed as being at least as desired as those on the indifference curve is a convex set.