Search results
Results from the WOW.Com Content Network
In set theory, the union (denoted by ∪) of a collection of sets is the set of all elements in the collection. [1] It is one of the fundamental operations through which sets can be combined and related to each other. A nullary union refers to a union of zero ( ) sets and it is by definition equal to the empty set.
The algebra of sets is the set-theoretic analogue of the algebra of numbers. Just as arithmetic addition and multiplication are associative and commutative, so are set union and intersection; just as the arithmetic relation "less than or equal" is reflexive, antisymmetric and transitive, so is the set relation of "subset".
So the intersection of the empty family should be the universal set (the identity element for the operation of intersection), [4] but in standard set theory, the universal set does not exist. However, when restricted to the context of subsets of a given fixed set X {\displaystyle X} , the notion of the intersection of an empty collection of ...
This article lists mathematical properties and laws of sets, involving the set-theoretic operations of union, intersection, and complementation and the relations of set equality and set inclusion. It also provides systematic procedures for evaluating expressions, and performing calculations, involving these operations and relations.
The intersection of A with any of B, C, D, or E is the empty set. In mathematics, the intersection of two or more objects is another object consisting of everything that is contained in all of the objects simultaneously. For example, in Euclidean geometry, when two lines in a plane are not parallel, their intersection is the point at
In mathematics, the symmetric difference of two sets, also known as the disjunctive union and set sum, is the set of elements which are in either of the sets, but not in their intersection. For example, the symmetric difference of the sets { 1 , 2 , 3 } {\displaystyle \{1,2,3\}} and { 3 , 4 } {\displaystyle \{3,4\}} is { 1 , 2 , 4 ...
The double-counted elements are those in the intersection of the two sets and the count is corrected by subtracting the size of the intersection. The inclusion-exclusion principle, being a generalization of the two-set case, is perhaps more clearly seen in the case of three sets, which for the sets A , B and C is given by
This definition of disjoint sets can be extended to families of sets and to indexed families of sets. By definition, a collection of sets is called a family of sets (such as the power set, for example). In some sources this is a set of sets, while other sources allow it to be a multiset of sets, with some sets repeated.