enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Knapsack problem - Wikipedia

    en.wikipedia.org/wiki/Knapsack_problem

    [1] The subset sum problem is a special case of the decision and 0-1 problems where each kind of item, the weight equals the value: =. In the field of cryptography, the term knapsack problem is often used to refer specifically to the subset sum problem. The subset sum problem is one of Karp's 21 NP-complete problems.

  3. List of knapsack problems - Wikipedia

    en.wikipedia.org/wiki/List_of_knapsack_problems

    The knapsack problem is one of the most studied problems in combinatorial optimization, with many real-life applications. For this reason, many special cases and generalizations have been examined. [1] [2] Common to all versions are a set of n items, with each item having an associated profit p j and weight w j.

  4. Quadratic knapsack problem - Wikipedia

    en.wikipedia.org/wiki/Quadratic_knapsack_problem

    The quadratic knapsack problem (QKP), first introduced in 19th century, [1] is an extension of knapsack problem that allows for quadratic terms in the objective function: Given a set of items, each with a weight, a value, and an extra profit that can be earned if two items are selected, determine the number of items to include in a collection without exceeding capacity of the knapsack, so as ...

  5. Fully polynomial-time approximation scheme - Wikipedia

    en.wikipedia.org/wiki/Fully_polynomial-time...

    0-1 knapsack problem. [19] Unbounded knapsack problem. [20] Multi-dimensional knapsack problem with Delta-modular constraints. [21] Multi-objective 0-1 knapsack problem. [22] Parametric knapsack problem. [23] Symmetric quadratic knapsack problem. [24] Count-subset-sum (#SubsetSum) - finding the number of distinct subsets with a sum of at most C ...

  6. Strong NP-completeness - Wikipedia

    en.wikipedia.org/wiki/Strong_NP-completeness

    For example, bin packing is strongly NP-complete while the 0-1 Knapsack problem is only weakly NP-complete. Thus the version of bin packing where the object and bin sizes are integers bounded by a polynomial remains NP-complete, while the corresponding version of the Knapsack problem can be solved in pseudo-polynomial time by dynamic programming.

  7. Change-making problem - Wikipedia

    en.wikipedia.org/wiki/Change-making_problem

    Coin values can be modeled by a set of n distinct positive integer values (whole numbers), arranged in increasing order as w 1 through w n.The problem is: given an amount W, also a positive integer, to find a set of non-negative (positive or zero) integers {x 1, x 2, ..., x n}, with each x j representing how often the coin with value w j is used, which minimize the total number of coins f(W)

  8. 0-1 Knapsack problem - Wikipedia

    en.wikipedia.org/?title=0-1_Knapsack_problem&...

    Knapsack problem#0-1 knapsack problem To a section : This is a redirect from a topic that does not have its own page to a section of a page on the subject. For redirects to embedded anchors on a page, use {{ R to anchor }} instead .

  9. Dynamic programming - Wikipedia

    en.wikipedia.org/wiki/Dynamic_programming

    Using dynamic programming in the calculation of the nth member of the Fibonacci sequence improves its performance greatly. Here is a naïve implementation, based directly on the mathematical definition: function fib(n) if n <= 1 return n return fib(n − 1) + fib(n − 2)