Search results
Results from the WOW.Com Content Network
Thermal velocity or thermal speed is a typical velocity of the thermal motion of particles that make up a gas, liquid, etc. Thus, indirectly, thermal velocity is a measure of temperature.
Similar to other heating methods, ohmic heating causes gelatinization of starches, melting of fats, and protein agglutination. [11] Water-soluble nutrients are maintained in the suspension liquid allowing for no loss of nutritional value if the liquid is consumed. [15] Ohmic heating is limited by viscosity, electrical conductivity, and fouling ...
The RMS value of an alternating current is also known as its heating value, as it is a voltage which is equivalent to the direct current value that would be required to get the same heating effect. For example, if 120 V AC RMS is applied to a resistive heating element it would heat up by exactly the same amount as if 120 V DC were applied.
District heating systems supply energy for water heating and space heating from combined heat and power (CHP) plants such as incinerators, central heat pumps, waste heat from industries, geothermal heating, and central solar heating. Actual heating of tap water is performed in heat exchangers at the consumers' premises.
For example, to heat water from 25 °C to steam at 250 °C at 1 atm requires 2869 kJ/kg. To heat water at 25 °C to liquid water at 250 °C at 5 MPa requires only 976 kJ/kg. It is also possible to recover much of the heat (say 75%) from superheated water, and therefore energy use for superheated water extraction is less than one sixth that ...
Data in the table above is given for water–steam equilibria at various temperatures over the entire temperature range at which liquid water can exist. Pressure of the equilibrium is given in the second column in kPa. The third column is the heat content of each gram of the liquid phase relative to water at 0 °C.
A 2008 review paper written by Philips researcher Clemens J. M. Lasance notes that: "Although there is an analogy between heat flow by conduction (Fourier's law) and the flow of an electric current (Ohm’s law), the corresponding physical properties of thermal conductivity and electrical conductivity conspire to make the behavior of heat flow ...
Note that the especially high molar values, as for paraffin, gasoline, water and ammonia, result from calculating specific heats in terms of moles of molecules. If specific heat is expressed per mole of atoms for these substances, none of the constant-volume values exceed, to any large extent, the theoretical Dulong–Petit limit of 25 J⋅mol ...