Search results
Results from the WOW.Com Content Network
Thermolysis converts 1 to (E,E) geometric isomer 2, but 3 to (E,Z) isomer 4.. The Woodward–Hoffmann rules (or the pericyclic selection rules) [1] are a set of rules devised by Robert Burns Woodward and Roald Hoffmann to rationalize or predict certain aspects of the stereochemistry and activation energy of pericyclic reactions, an important class of reactions in organic chemistry.
In 2008 P.S. Baran et al. [48] reported a new method for the synthesis of 1,3-diols using a variant of the Hofmann–Löffler–Freytag reaction. In 2017, Nagib et al. [49] [50] reported a new method for the synthesis of 1,2-amino-alcohols using a variant of the Hofmann–Löffler–Freytag reaction to promote β selective C-H amination of ...
The Hofmann rearrangement (Hofmann degradation) is the organic reaction of a primary amide to a primary amine with one less carbon atom. [1] [2] [3] The reaction involves oxidation of the nitrogen followed by rearrangement of the carbonyl and nitrogen to give an isocyanate intermediate.
An example of a Hofmann elimination (not involving a contrast between a Zaitsev product and a Hofmann product) is the synthesis of trans-cyclooctene. [4] The trans isomer is selectively trapped as a complex with silver nitrate (in this diagram the trans form looks like a cis form, but see the trans-cyclooctene article for better images):
In chemistry, a reaction mechanism is the step by step sequence of elementary reactions by which overall chemical reaction occurs. [1] A chemical mechanism is a theoretical conjecture that tries to describe in detail what takes place at each stage of an overall chemical reaction. The detailed steps of a reaction are not observable in most cases.
The most commonly studied reactions in this field are the 4π Staudinger β-lactam synthesis [10] and the 4π Nazarov reaction; asymmetric catalysis of both reactions have been controlled by use of a chiral auxiliary, and the Nazarov reaction has been performed catalytically using chiral Lewis acids, Brønsted acids and chiral amines.
The carbylamine reaction (also known as the Hoffmann isocyanide synthesis) is the synthesis of an isocyanide by the reaction of a primary amine, chloroform, and base. The conversion involves the intermediacy of dichlorocarbene .
The mechanism for this reaction is analogous to the sulfoxide elimination, which is a thermal syn elimination through a 5-membered cyclic transition state. Selenoxides are preferred for this type of transformation over sulfoxides due to their increased reactivity toward β-elimination, in some cases allowing the elimination to take place at ...