Search results
Results from the WOW.Com Content Network
Electron and hole mobility are special cases of electrical mobility of charged particles in a fluid under an applied electric field. When an electric field E is applied across a piece of material, the electrons respond by moving with an average velocity called the drift velocity, . Then the electron mobility μ is defined as =.
The carrier particles, namely the holes and electrons of a semiconductor, move from a place of higher concentration to a place of lower concentration. Hence, due to the flow of holes and electrons there is a current. This current is called the diffusion current. The drift current and the diffusion current make up the total current in the conductor.
Electron and hole trapping in the Shockley-Read-Hall model. In the SRH model, four things can happen involving trap levels: [11] An electron in the conduction band can be trapped in an intragap state. An electron can be emitted into the conduction band from a trap level. A hole in the valence band can be captured by a trap.
Engineered in the UK but produced and assembled in Stillwater, Oklahoma by specialty engine builder Mercury Marine, the all-aluminum LT5 shared only the 4.4 inch bore spacing with any previous Chevy small-block engine. It does not have reverse cooling and is generally not considered a small-block Chevrolet.
where g s = 2, due to spin degeneracy, e is the electron charge, h is the Planck constant, and are the Fermi levels of A and B, M(E) is the number of propagating modes in the channel, f′(E) is the deviation from the equilibrium electron distribution (perturbation), and T(E) is the transmission probability (T = 1 for ballistic).
The drift velocity, and resulting current, is characterized by the mobility; for details, see electron mobility (for solids) or electrical mobility (for a more general discussion). See drift–diffusion equation for the way that the drift current, diffusion current, and carrier generation and recombination are combined into a single equation.
is the mobility (m 2 /(V·s)). In other words, the electrical mobility of the particle is defined as the ratio of the drift velocity to the magnitude of the electric field: =. For example, the mobility of the sodium ion (Na +) in water at 25 °C is 5.19 × 10 −8 m 2 /(V·s). [1]
The proportionality constant is known as mobility of the carrier, which is a material property. A good conductor would have a high mobility value for its charge carrier, which means higher velocity, and consequently higher current values for a given electric field strength. There is a limit though to this process and at some high field value, a ...