enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Euler angles - Wikipedia

    en.wikipedia.org/wiki/Euler_angles

    They constitute a mixed axes of rotation system, where the first angle moves the line of nodes around the external axis z, the second rotates around the line of nodes N and the third one is an intrinsic rotation around Z, an axis fixed in the body that moves. The static definition implies that: α (precession) represents a rotation around the z ...

  3. Conversion between quaternions and Euler angles - Wikipedia

    en.wikipedia.org/wiki/Conversion_between...

    z-y′-x″ sequence (intrinsic rotations; N coincides with y’). The angle rotation sequence is ψ, θ, φ. Note that in this case ψ > 90° and θ is a negative angle. Similarly for Euler angles, we use the Tait Bryan angles (in terms of flight dynamics): Heading – : rotation about the Z-axis

  4. Rotation formalisms in three dimensions - Wikipedia

    en.wikipedia.org/wiki/Rotation_formalisms_in...

    The idea behind Euler rotations is to split the complete rotation of the coordinate system into three simpler constitutive rotations, called precession, nutation, and intrinsic rotation, being each one of them an increment on one of the Euler angles. Notice that the outer matrix will represent a rotation around one of the axes of the reference ...

  5. Quaternions and spatial rotation - Wikipedia

    en.wikipedia.org/wiki/Quaternions_and_spatial...

    3D visualization of a sphere and a rotation about an Euler axis (^) by an angle of In 3-dimensional space, according to Euler's rotation theorem, any rotation or sequence of rotations of a rigid body or coordinate system about a fixed point is equivalent to a single rotation by a given angle about a fixed axis (called the Euler axis) that runs through the fixed point. [6]

  6. Euler–Rodrigues formula - Wikipedia

    en.wikipedia.org/wiki/Euler–Rodrigues_formula

    Rotation is given by ′ (′ + ′ + ′) = † = (+ +) (+ + +), which it can be confirmed by multiplying out gives the Euler–Rodrigues formula as stated above. Thus, the Euler parameters are the real and imaginary coordinates in an SU(2) matrix corresponding to an element of the spin group Spin(3), which maps by a double cover mapping to a ...

  7. Rotation (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Rotation_(mathematics)

    The rotation group is a Lie group of rotations about a fixed point. This (common) fixed point or center is called the center of rotation and is usually identified with the origin. The rotation group is a point stabilizer in a broader group of (orientation-preserving) motions. For a particular rotation: The axis of rotation is a line of its ...

  8. Euler's rotation theorem - Wikipedia

    en.wikipedia.org/wiki/Euler's_rotation_theorem

    A rotation represented by an Euler axis and angle. In geometry, Euler's rotation theorem states that, in three-dimensional space, any displacement of a rigid body such that a point on the rigid body remains fixed, is equivalent to a single rotation about some axis that runs through the fixed point. It also means that the composition of two ...

  9. Rotation matrix - Wikipedia

    en.wikipedia.org/wiki/Rotation_matrix

    The case of θ = 0, φ ≠ 0 is called a simple rotation, with two unit eigenvalues forming an axis plane, and a two-dimensional rotation orthogonal to the axis plane. Otherwise, there is no axis plane. The case of θ = φ is called an isoclinic rotation, having eigenvalues e ±iθ repeated twice, so every vector is rotated through an angle θ.