enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Spherical trigonometry - Wikipedia

    en.wikipedia.org/wiki/Spherical_trigonometry

    A quadrantal spherical triangle together with Napier's circle for use in his mnemonics. A quadrantal spherical triangle is defined to be a spherical triangle in which one of the sides subtends an angle of π /2 radians at the centre of the sphere: on the unit sphere the side has length π /2.

  3. John Napier - Wikipedia

    en.wikipedia.org/wiki/John_Napier

    A quadrantal spherical triangle together with Napier's circle for use in his mnemonics. A quadrantal spherical triangle is defined to be a spherical triangle in which one of the sides subtends an angle of π /2 radians at the centre of the sphere: on the unit sphere the side has length π /2.

  4. Spherical geometry - Wikipedia

    en.wikipedia.org/wiki/Spherical_geometry

    In a small triangle on the face of the earth, the sum of the angles is only slightly more than 180 degrees. A sphere with a spherical triangle on it. Spherical geometry or spherics (from Ancient Greek σφαιρικά) is the geometry of the two-dimensional surface of a sphere [a] or the n-dimensional surface of higher dimensional spheres.

  5. Quaternions and spatial rotation - Wikipedia

    en.wikipedia.org/wiki/Quaternions_and_spatial...

    3D visualization of a sphere and a rotation about an Euler axis (^) by an angle of In 3-dimensional space, according to Euler's rotation theorem, any rotation or sequence of rotations of a rigid body or coordinate system about a fixed point is equivalent to a single rotation by a given angle about a fixed axis (called the Euler axis) that runs through the fixed point. [6]

  6. Triangle - Wikipedia

    en.wikipedia.org/wiki/Triangle

    The triangles in both spaces have properties different from the triangles in Euclidean space. For example, as mentioned above, the internal angles of a triangle in Euclidean space always add up to 180°. However, the sum of the internal angles of a hyperbolic triangle is less than 180°, and for any spherical triangle, the sum is more than 180 ...

  7. Lexell's theorem - Wikipedia

    en.wikipedia.org/wiki/Lexell's_theorem

    An area formula for spherical triangles analogous to the formula for planar triangles. Given a fixed base , an arc of a great circle on a sphere, and two apex points and on the same side of great circle , Lexell's theorem holds that the surface area of the spherical triangle is equal to that of if and only if lies on the small-circle arc , where and are the points antipodal to and , respectively.

  8. Octant of a sphere - Wikipedia

    en.wikipedia.org/wiki/Octant_of_a_sphere

    The spherical octant itself is the intersection of the sphere with one octant of space. Uniquely among spherical triangles, the octant is its own polar triangle. [2] The octant can be parametrized using a rational quartic Bézier triangle. [3] The solid angle subtended by a spherical octant is π /2 sr, one-eight of the solid angle of a sphere. [4]

  9. Half-side formula - Wikipedia

    en.wikipedia.org/wiki/Half-side_formula

    Spherical triangle. In spherical trigonometry, the half side formula relates the angles and lengths of the sides of spherical triangles, which are triangles drawn on the surface of a sphere and so have curved sides and do not obey the formulas for plane triangles. [1]