enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Dot product - Wikipedia

    en.wikipedia.org/wiki/Dot_product

    The complex dot product leads to the notions of Hermitian forms and general inner product spaces, which are widely used in mathematics and physics. The self dot product of a complex vector =, involving the conjugate transpose of a row vector, is also known as the norm squared, = ‖ ‖, after the Euclidean norm; it is a vector generalization ...

  3. Dyadics - Wikipedia

    en.wikipedia.org/wiki/Dyadics

    The dot product takes in two vectors and returns a scalar, while the cross product [a] returns a pseudovector. Both of these have various significant geometric interpretations and are widely used in mathematics, physics , and engineering .

  4. Vector multiplication - Wikipedia

    en.wikipedia.org/wiki/Vector_multiplication

    The dot product of two vectors can be defined as the product of the magnitudes of the two vectors and the cosine of the angle between the two vectors. Alternatively, it is defined as the product of the projection of the first vector onto the second vector and the magnitude of the second vector.

  5. Triple product - Wikipedia

    en.wikipedia.org/wiki/Triple_product

    The scalar triple product (also called the mixed product, box product, or triple scalar product) is defined as the dot product of one of the vectors with the cross product of the other two. Geometric interpretation

  6. Vector calculus identities - Wikipedia

    en.wikipedia.org/wiki/Vector_calculus_identities

    The generalization of the dot product formula to Riemannian manifolds is a defining property of a Riemannian connection, which differentiates a vector field to give a vector-valued 1-form. Cross product rule

  7. Inner product space - Wikipedia

    en.wikipedia.org/wiki/Inner_product_space

    Inner product spaces generalize Euclidean vector spaces, in which the inner product is the dot product or scalar product of Cartesian coordinates. Inner product spaces of infinite dimension are widely used in functional analysis. Inner product spaces over the field of complex numbers are sometimes referred to as unitary spaces.

  8. Euclidean space - Wikipedia

    en.wikipedia.org/wiki/Euclidean_space

    The inner product of a Euclidean space is often called dot product and denoted x ⋅ y. This is specially the case when a Cartesian coordinate system has been chosen, as, in this case, the inner product of two vectors is the dot product of their coordinate vectors. For this reason, and for historical reasons, the dot notation is more commonly ...

  9. Hilbert space - Wikipedia

    en.wikipedia.org/wiki/Hilbert_space

    The dot product takes two vectors x and y, and produces a real number x ⋅ y. If x and y are represented in Cartesian coordinates, then the dot product is defined by () = + +. The dot product satisfies the properties [1] It is symmetric in x and y: x ⋅ y = y ⋅ x.