Search results
Results from the WOW.Com Content Network
Segmentation of a 512 × 512 image takes less than a second on a modern (2015) GPU using the U-Net architecture. [1] [3] [4] [5] The U-Net architecture has also been employed in diffusion models for iterative image denoising. [6] This technology underlies many modern image generation models, such as DALL-E, Midjourney, and Stable Diffusion.
image, label classification 2010 [2] NIST 80 Million Tiny Images: 80 million 32×32 images labelled with 75,062 non-abstract nouns. 80,000,000 image, label 2008 [3] Torralba et al. JFT-300M Dataset internal to Google Research. 300M images with 375M labels in 18291 categories 300,000,000 image, label 2017 [4] Google Research Places
A major use of SRM is in image processing where higher number color palettes in an image are converted into lower number palettes by merging the similar colors' palettes together. The merging criteria include allowed color ranges, minimum size of a region, maximum size of a region, allowed number of platelets, etc.
As applied in the field of computer vision, graph cut optimization can be employed to efficiently solve a wide variety of low-level computer vision problems (early vision [1]), such as image smoothing, the stereo correspondence problem, image segmentation, object co-segmentation, and many other computer vision problems that can be formulated in terms of energy minimization.
In digital image processing and computer vision, image segmentation is the process of partitioning a digital image into multiple image segments, also known as image regions or image objects (sets of pixels). The goal of segmentation is to simplify and/or change the representation of an image into something that is more meaningful and easier to ...
OBJ CUT [7] is an efficient method that automatically segments an object. The OBJ CUT method is a generic method, and therefore it is applicable to any object category model. Given an image D containing an instance of a known object category, e.g. cows, the OBJ CUT algorithm computes a segmentation of the object, that is, it infers a set of ...
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Help; Learn to edit; Community portal; Recent changes; Upload file
The most common method for blob detection is by using convolution. Given some property of interest expressed as a function of position on the image, there are two main classes of blob detectors: (i) differential methods , which are based on derivatives of the function with respect to position, and (ii) methods based on local extrema , which are ...