Search results
Results from the WOW.Com Content Network
The Gaussian models used by the expectation–maximization algorithm (arguably a generalization of k-means) are more flexible by having both variances and covariances. The EM result is thus able to accommodate clusters of variable size much better than k -means as well as correlated clusters (not in this example).
This training algorithm is an instance of the more general expectation–maximization algorithm (EM): the prediction step inside the loop is the E-step of EM, while the re-training of naive Bayes is the M-step. The algorithm is formally justified by the assumption that the data are generated by a mixture model, and the components of this ...
Statistical learning theory is a framework for machine learning drawing from the fields of statistics and functional analysis. [1] [2] [3] Statistical learning theory deals with the statistical inference problem of finding a predictive function based on data.
scikit-learn (formerly scikits.learn and also known as sklearn) is a free and open-source machine learning library for the Python programming language. [3] It features various classification, regression and clustering algorithms including support-vector machines, random forests, gradient boosting, k-means and DBSCAN, and is designed to interoperate with the Python numerical and scientific ...
where is the kernel function (usually Gaussian), are the variances of the prior on the weight vector (,), and , …, are the input vectors of the training set. [ 4 ] Compared to that of support vector machines (SVM), the Bayesian formulation of the RVM avoids the set of free parameters of the SVM (that usually require cross-validation-based ...
scikit-learn (a free and open-source machine learning library for the Python programming language). Weka (a free and open-source data-mining suite, contains many decision tree algorithms), Notable commercial software: MATLAB, Microsoft SQL Server, and; RapidMiner, SAS Enterprise Miner, IBM SPSS Modeler,
scikit-learn includes a Python implementation of DBSCAN for arbitrary Minkowski metrics, which can be accelerated using k-d trees and ball trees but which uses worst-case quadratic memory. A contribution to scikit-learn provides an implementation of the HDBSCAN* algorithm.
If each of the features makes an independent contribution to the output, then algorithms based on linear functions (e.g., linear regression, logistic regression, support-vector machines, naive Bayes) and distance functions (e.g., nearest neighbor methods, support-vector machines with Gaussian kernels) generally perform well