enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Fibonacci numbers in popular culture - Wikipedia

    en.wikipedia.org/wiki/Fibonacci_numbers_in...

    The Fibonacci numbers are a sequence of integers, typically starting with 0, 1 and continuing 1, 2, 3, 5, 8, 13, ..., each new number being the sum of the previous two. The Fibonacci numbers, often presented in conjunction with the golden ratio, are a popular theme in culture. They have been mentioned in novels, films, television shows, and songs.

  3. Pisano period - Wikipedia

    en.wikipedia.org/wiki/Pisano_period

    For generalized Fibonacci sequences (satisfying the same recurrence relation, but with other initial values, e.g. the Lucas numbers) the number of occurrences of 0 per cycle is 0, 1, 2, or 4. The ratio of the Pisano period of n and the number of zeros modulo n in the cycle gives the rank of apparition or Fibonacci entry point of n.

  4. Fibonacci - Wikipedia

    en.wikipedia.org/wiki/Fibonacci

    Fibonacci was born around 1170 to Guglielmo, an Italian merchant and customs official. [3] Guglielmo directed a trading post in Bugia (Béjaïa), in modern-day Algeria. [16] Fibonacci travelled with him as a young boy, and it was in Bugia (Algeria) where he was educated that he learned about the Hindu–Arabic numeral system. [17] [7]

  5. Fibonacci sequence - Wikipedia

    en.wikipedia.org/wiki/Fibonacci_sequence

    A Fibonacci prime is a Fibonacci number that is prime. The first few are: [47] 2, 3, 5, 13, 89, 233, 1597, 28657, 514229, ... Fibonacci primes with thousands of digits have been found, but it is not known whether there are infinitely many. [48] F kn is divisible by F n, so, apart from F 4 = 3, any Fibonacci prime must have a prime index.

  6. Liber Abaci - Wikipedia

    en.wikipedia.org/wiki/Liber_Abaci

    Fibonacci instead would write the same fraction to the left, i.e., . Fibonacci used a composite fraction notation in which a sequence of numerators and denominators shared the same fraction bar; each such term represented an additional fraction of the given numerator divided by the product of all the denominators below and to the right of it.

  7. Virahanka - Wikipedia

    en.wikipedia.org/wiki/Virahanka

    Virahanka (Devanagari: विरहाङ्क) was an Indian prosodist who is also known for his work on mathematics.He may have lived in the 6th century, but it is also possible that he worked as late as the 8th century.

  8. Generalizations of Fibonacci numbers - Wikipedia

    en.wikipedia.org/wiki/Generalizations_of...

    The n-Fibonacci constant is the ratio toward which adjacent -Fibonacci numbers tend; it is also called the n th metallic mean, and it is the only positive root of =. For example, the case of n = 1 {\displaystyle n=1} is 1 + 5 2 {\displaystyle {\frac {1+{\sqrt {5}}}{2}}} , or the golden ratio , and the case of n = 2 {\displaystyle n=2} is 1 + 2 ...

  9. Hosoya's triangle - Wikipedia

    en.wikipedia.org/wiki/Hosoya's_triangle

    Hosoya's triangle or the Hosoya triangle (originally Fibonacci triangle; OEIS: A058071) is a triangular arrangement of numbers (like Pascal's triangle) based on the Fibonacci numbers. Each number is the sum of the two numbers above in either the left diagonal or the right diagonal.