Search results
Results from the WOW.Com Content Network
For example, a rate law of the form = [] + [] represents concurrent first order and second order reactions (or more often concurrent pseudo-first order and second order) reactions, and can be described as mixed first and second order. [31]
Elimination reaction of cyclohexanol to cyclohexene with sulfuric acid and heat [1] An elimination reaction is a type of organic reaction in which two substituents are removed from a molecule in either a one- or two-step mechanism. [2] The one-step mechanism is known as the E2 reaction, and the two-step mechanism is known as the E1 reaction ...
The reaction order is 1 with respect to B and −1 with respect to A. Reactant A inhibits the reaction at all concentrations. The following reactions follow a Langmuir–Hinshelwood mechanism: [4] 2 CO + O 2 → 2 CO 2 on a platinum catalyst. CO + 2H 2 → CH 3 OH on a ZnO catalyst. C 2 H 4 + H 2 → C 2 H 6 on a copper catalyst. N 2 O + H 2 ...
First-order phase transitions exhibit a discontinuity in the first derivative of the free energy with respect to some thermodynamic variable. [6] The various solid/liquid/gas transitions are classified as first-order transitions because they involve a discontinuous change in density, which is the (inverse of the) first derivative of the free ...
Here k is the first-order rate constant, having dimension 1/time, [A](t) is the concentration at a time t and [A] 0 is the initial concentration. The rate of a first-order reaction depends only on the concentration and the properties of the involved substance, and the reaction itself can be described with a characteristic half-life. More than ...
An example of a simple chain reaction is the thermal decomposition of acetaldehyde (CH 3 CHO) to methane (CH 4) and carbon monoxide (CO). The experimental reaction order is 3/2, [4] which can be explained by a Rice-Herzfeld mechanism. [5] This reaction mechanism for acetaldehyde has 4 steps with rate equations for each step :
n th-order reaction (r = kC A n), where k is the reaction rate constant, C A is the concentration of species A, and n is the order of the reaction; isothermal conditions, or constant temperature (k is constant) single, irreversible reaction (ν A = −1) All reactant A is converted to products via chemical reaction; N A = C A V
An example of an order parameter for crystallization is "bond orientational order" describing the development of preferred directions (the crystallographic axes) in space. For many systems, phases with more structural (e.g. crystalline) order exhibit less entropy than fluid phases under the same thermodynamic conditions.