enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Vortex shedding - Wikipedia

    en.wikipedia.org/wiki/Vortex_shedding

    The frequency at which vortex shedding takes place for a cylinder is related to the Strouhal number by the following equation: = Where is the dimensionless Strouhal number, is the vortex shedding frequency (Hz), is the diameter of the cylinder (m), and is the flow velocity (m/s).

  3. Circular motion - Wikipedia

    en.wikipedia.org/wiki/Circular_motion

    Solving applications dealing with non-uniform circular motion involves force analysis. With a uniform circular motion, the only force acting upon an object traveling in a circle is the centripetal force. In a non-uniform circular motion, there are additional forces acting on the object due to a non-zero tangential acceleration.

  4. Drag coefficient - Wikipedia

    en.wikipedia.org/wiki/Drag_coefficient

    Drag coefficients in fluids with Reynolds number approximately 10 4 [1] [2] Shapes are depicted with the same projected frontal area. In fluid dynamics, the drag coefficient (commonly denoted as: , or ) is a dimensionless quantity that is used to quantify the drag or resistance of an object in a fluid environment, such as air or water.

  5. Vortex sheet - Wikipedia

    en.wikipedia.org/wiki/Vortex_sheet

    The discontinuity in the tangential velocity means the flow has infinite vorticity on a vortex sheet. At high Reynolds numbers, vortex sheets tend to be unstable. In particular, they may exhibit Kelvin–Helmholtz instability. The formulation of the vortex sheet equation of motion is given in terms of a complex coordinate = +.

  6. Drag equation - Wikipedia

    en.wikipedia.org/wiki/Drag_equation

    In fluid dynamics, the drag equation is a formula used to calculate the force of drag experienced by an object due to movement through a fully enclosing fluid. The equation is: F d = 1 2 ρ u 2 c d A {\displaystyle F_{\rm {d}}\,=\,{\tfrac {1}{2}}\,\rho \,u^{2}\,c_{\rm {d}}\,A} where

  7. Kármán vortex street - Wikipedia

    en.wikipedia.org/wiki/Kármán_vortex_street

    Visualisation of the vortex street behind a circular cylinder in air; the flow is made visible through release of glycerol vapour in the air near the cylinder. In fluid dynamics, a Kármán vortex street (or a von Kármán vortex street) is a repeating pattern of swirling vortices, caused by a process known as vortex shedding, which is responsible for the unsteady separation of flow of a fluid ...

  8. List of equations in classical mechanics - Wikipedia

    en.wikipedia.org/wiki/List_of_equations_in...

    Classical mechanics is the branch of physics used to describe the motion of macroscopic objects. [1] It is the most familiar of the theories of physics. The concepts it covers, such as mass, acceleration, and force, are commonly used and known. [2]

  9. Morison equation - Wikipedia

    en.wikipedia.org/wiki/Morison_equation

    In fluid dynamics the Morison equation is a semi-empirical equation for the inline force on a body in oscillatory flow. It is sometimes called the MOJS equation after all four authors—Morison, O'Brien , Johnson and Schaaf—of the 1950 paper in which the equation was introduced. [ 1 ]