Search results
Results from the WOW.Com Content Network
In combinatorial mathematics, the Steiner tree problem, or minimum Steiner tree problem, named after Jakob Steiner, is an umbrella term for a class of problems in combinatorial optimization. While Steiner tree problems may be formulated in a number of settings, they all require an optimal interconnect for a given set of objects and a predefined ...
The RSMT is an NP-hard problem, and as with other NP-hard problems, common approaches to tackle it are approximate algorithms, heuristic algorithms, and separation of efficiently solvable special cases. An overview of the approaches to the problem may be found in the 1992 book by Hwang, Richards and Winter, The Steiner Tree Problem. [3]
Steiner tree, or Minimum spanning tree for a subset of the vertices of a graph. [2] (The minimum spanning tree for an entire graph is solvable in polynomial time.) Modularity maximization [5] Monochromatic triangle [3]: GT6 Pathwidth, [6] or, equivalently, interval thickness, and vertex separation number [7] Rank coloring; k-Chinese postman
A minimum spanning tree of a weighted planar graph.Finding a minimum spanning tree is a common problem involving combinatorial optimization. Combinatorial optimization is a subfield of mathematical optimization that consists of finding an optimal object from a finite set of objects, [1] where the set of feasible solutions is discrete or can be reduced to a discrete set.
The name of these points comes from the Steiner tree problem, named after Jakob Steiner, in which the goal is to connect the input points by a network of minimum total length. If the input points alone are used as endpoints of the network edges, then the shortest network is their minimum spanning tree. However, shorter networks can often be ...
In computational complexity theory, Karp's 21 NP-complete problems are a set of computational problems which are NP-complete.In his 1972 paper, "Reducibility Among Combinatorial Problems", [1] Richard Karp used Stephen Cook's 1971 theorem that the boolean satisfiability problem is NP-complete [2] (also called the Cook-Levin theorem) to show that there is a polynomial time many-one reduction ...
In combinatorial optimization, the minimum Wiener connector problem is the problem of finding the minimum Wiener connector. It can be thought of as a version of the classic Steiner tree problem (one of Karp's 21 NP-complete problems), where instead of minimizing the size of the tree, the objective is to minimize the distances in the subgraph ...
Does linear programming admit a strongly polynomial-time algorithm? (This is problem #9 in Smale's list of problems.) How many queries are required for envy-free cake-cutting? What is the algorithmic complexity of the minimum spanning tree problem? Equivalently, what is the decision tree complexity of the MST problem?