enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Regression validation - Wikipedia

    en.wikipedia.org/wiki/Regression_validation

    One measure of goodness of fit is the coefficient of determination, often denoted, R 2. In ordinary least squares with an intercept, it ranges between 0 and 1. However, an R 2 close to 1 does not guarantee that the model fits the data well. For example, if the functional form of the model does not match the data, R 2 can be high despite a poor ...

  3. Commonality analysis - Wikipedia

    en.wikipedia.org/wiki/Commonality_analysis

    Commonality analysis is a statistical technique within multiple linear regression that decomposes a model's R 2 statistic (i.e., explained variance) by all independent variables on a dependent variable in a multiple linear regression model into commonality coefficients.

  4. Regression analysis - Wikipedia

    en.wikipedia.org/wiki/Regression_analysis

    Once researchers determine their preferred statistical model, different forms of regression analysis provide tools to estimate the parameters . For example, least squares (including its most common variant, ordinary least squares ) finds the value of β {\displaystyle \beta } that minimizes the sum of squared errors ∑ i ( Y i − f ( X i , β ...

  5. Coefficient of determination - Wikipedia

    en.wikipedia.org/wiki/Coefficient_of_determination

    Ordinary least squares regression of Okun's law.Since the regression line does not miss any of the points by very much, the R 2 of the regression is relatively high.. In statistics, the coefficient of determination, denoted R 2 or r 2 and pronounced "R squared", is the proportion of the variation in the dependent variable that is predictable from the independent variable(s).

  6. Outline of regression analysis - Wikipedia

    en.wikipedia.org/wiki/Outline_of_regression_analysis

    Regression analysis – use of statistical techniques for learning about the relationship between one or more dependent variables (Y) and one or more independent variables (X). Overview articles [ edit ]

  7. Regression diagnostic - Wikipedia

    en.wikipedia.org/wiki/Regression_diagnostic

    Partial regression plot; Student's t test for testing inclusion of a single explanatory variable, or the F test for testing inclusion of a group of variables, both under the assumption that model errors are homoscedastic and have a normal distribution. Change of model structure between groups of observations. Structural break test. Chow test

  8. Standardized coefficient - Wikipedia

    en.wikipedia.org/wiki/Standardized_coefficient

    Standardization of the coefficient is usually done to answer the question of which of the independent variables have a greater effect on the dependent variable in a multiple regression analysis where the variables are measured in different units of measurement (for example, income measured in dollars and family size measured in number of individuals).

  9. Explained sum of squares - Wikipedia

    en.wikipedia.org/wiki/Explained_sum_of_squares

    The general regression model with n observations and k explanators, the first of which is a constant unit vector whose coefficient is the regression intercept, is = + where y is an n × 1 vector of dependent variable observations, each column of the n × k matrix X is a vector of observations on one of the k explanators, is a k × 1 vector of true coefficients, and e is an n × 1 vector of the ...