Search results
Results from the WOW.Com Content Network
Mitochondrial DNA is a main source of this extrachromosomal DNA in eukaryotes. [5] The fact that this organelle contains its own DNA supports the hypothesis that mitochondria originated as bacterial cells engulfed by ancestral eukaryotic cells. [6] Extrachromosomal DNA is often used in research into replication because it is easy to identify ...
Extrachromosomal circular DNA (eccDNA) is a type of double-stranded circular DNA structure that was first discovered in 1964 by Alix Bassel and Yasuo Hotta. [1] In contrast to previously identified circular DNA structures (e.g., bacterial plasmids, mitochondrial DNA, circular bacterial chromosomes, or chloroplast DNA), eccDNA are circular DNA found in the eukaryotic nuclei of plant and animal ...
For example, ncl-1, located in chromosomal DNA, exhibits a larger nucleolus than the wild-type allele, which is in the array. Thus, cells which exhibit larger nucleoli have usually not retained the extrachromosomal array. The gene of interest is the target of the mosaic analysis. Cells lacking the extrachromosomal array also lack the functional ...
Double minutes (DMs) are small fragments of extrachromosomal DNA, which have been observed in a large number of human tumors including breast, lung, ovary, colon, and most notably, neuroblastoma. They are a manifestation of gene amplification as a result of chromothripsis , [ 1 ] during the development of tumors, which give the cells selective ...
Circular extrachromosomal DNA are not only found in yeast but other eukaryotic organisms. [15] [16] A regulated formation of eccDNA in preblastua Xenopus embryos has been developed. The population of circular rDNA is decreased in embryos, indicative of the circular rDNA migrating to linear DNA, as was shown in their analysis on 2D gel ...
The term plasmid was coined in 1952 by the American molecular biologist Joshua Lederberg to refer to "any extrachromosomal hereditary determinant." [11] [12] The term's early usage included any bacterial genetic material that exists extrachromosomally for at least part of its replication cycle, but because that description includes bacterial viruses, the notion of plasmid was refined over time ...
In molecular biology and genetics, DNA annotation or genome annotation is the process of describing the structure and function of the components of a genome, [2] by analyzing and interpreting them in order to extract their biological significance and understand the biological processes in which they participate. [3]
For example, if the 100th base of a nucleotide sequence mutated from G to C, then it would be written as g.100G>C if the mutation occurred in genomic DNA, m.100G>C if the mutation occurred in mitochondrial DNA, or r.100g>c if the mutation occurred in RNA.