Search results
Results from the WOW.Com Content Network
If a map, φ, carries every point on manifold M to manifold N then the pushforward of φ carries vectors in the tangent space at every point in M to a tangent space at every point in N. In differential geometry , pushforward is a linear approximation of smooth maps (formulating manifold) on tangent spaces.
The change from chaos to a window as r is increased is caused by a tangent bifurcation, where the map curve is tangent to the diagonal of y = x at the moment of bifurcation, and further parameter changes result in two fixed points where the curve and the line intersect.
This projection maps each element of the tangent space to the single point . The tangent bundle comes equipped with a natural topology (described in a section below ). With this topology, the tangent bundle to a manifold is the prototypical example of a vector bundle (which is a fiber bundle whose fibers are vector spaces ).
An extremely special case of this is the following: if a differentiable function from reals to the reals has nonzero derivative at a zero of the function, then the zero is simple, i.e. it the graph is transverse to the x-axis at that zero; a zero derivative would mean a horizontal tangent to the curve, which would agree with the tangent space ...
In differential geometry, the Gauss map of a surface is a function that maps each point in the surface to a unit vector that is orthogonal to the surface at that point. Namely, given a surface X in Euclidean space R 3 , the Gauss map is a map N : X → S 2 (where S 2 is the unit sphere ) such that for each p in X , the function value N ( p ) is ...
A differentiable map f : M → N is said to have constant rank if the rank of f is the same for all p in M. Constant rank maps have a number of nice properties and are an important concept in differential topology. Three special cases of constant rank maps occur. A constant rank map f : M → N is
Smooth maps between manifolds induce linear maps between tangent spaces: for :, at each point the pushforward (or differential) maps tangent vectors at to tangent vectors at (): ,: (), and on the level of the tangent bundle, the pushforward is a vector bundle homomorphism: :.
The same idea underlies the solution of a first order equation as an integral of the Monge cone. [5] The Monge cone is a cone field in the R n+1 of the (x,u) variables cut out by the envelope of the tangent spaces to the first order PDE at each point. A solution of the PDE is then an envelope of the cone field.