Search results
Results from the WOW.Com Content Network
Two to the power of n, written as 2 n, is the number of values in which the bits in a binary word of length n can be set, where each bit is either of two values. A word, interpreted as representing an integer in a range starting at zero, referred to as an "unsigned integer", can represent values from 0 (000...000 2) to 2 n − 1 (111...111 2) inclusively.
A binary number is a number expressed in the base-2 numeral system or binary numeral system, a method for representing numbers that uses only two symbols for the natural numbers: typically "0" and "1" . A binary number may also refer to a rational number that has a finite representation in the binary numeral system, that is, the quotient of an ...
This is a list of some binary codes that are (or have been) used to represent text as a sequence of binary digits "0" and "1". Fixed-width binary codes use a set number of bits to represent each character in the text, while in variable-width binary codes, the number of bits may vary from character to character.
For example, if the values are A and B, then the data set A, A, B can be represented in counts as (1, 0), (1, 0), (0, 1). Once converted to counts, binary data can be grouped and the counts added. For instance, if the set A, A, B is grouped, the total counts are (2, 1): 2 A's and 1 B (out of 3 trials).
In conventional binary number systems, the base, or radix, is 2; thus the rightmost bit represents 2 0, the next bit represents 2 1, the next bit 2 2, and so on. However, a binary number system with base −2 is also possible. The rightmost bit represents (−2) 0 = +1, the next bit represents (−2) 1 = −2, the next bit (−2) 2 = +4 and so ...
In some systems, while the base is a positive integer, negative digits are allowed. Non-adjacent form is a particular system where the base is b = 2.In the balanced ternary system, the base is b = 3, and the numerals have the values −1, 0 and +1 (rather than 0, 1 and 2 as in the standard ternary system, or 1, 2 and 3 as in the bijective ternary system).
Binary logarithms can be used to calculate the length of the representation of a number in the binary numeral system, or the number of bits needed to encode a message in information theory. In computer science, they count the number of steps needed for binary search and related algorithms.
More precisely, a binary operation on a set is a mapping of the elements of the Cartesian product to : [1] [2] [3] f : S × S → S . {\displaystyle \,f\colon S\times S\rightarrow S.} The closure property of a binary operation expresses the existence of a result for the operation given any pair of operands.