Search results
Results from the WOW.Com Content Network
The distance (or perpendicular distance) from a point to a line is the shortest distance from a fixed point to any point on a fixed infinite line in Euclidean geometry. It is the length of the line segment which joins the point to the line and is perpendicular to the line. The formula for calculating it can be derived and expressed in several ways.
The Euclidean distance is the prototypical example of the distance in a metric space, [10] and obeys all the defining properties of a metric space: [11] It is symmetric, meaning that for all points and , (,) = (,). That is (unlike road distance with one-way streets) the distance between two points does not depend on which of the two points is ...
Definition. Formally, a metric space is an ordered pair (M, d) where M is a set and d is a metric on M, i.e., a function satisfying the following axioms for all points : [4][5] The distance from a point to itself is zero: (Positivity) The distance between two distinct points is always positive:
The force is proportional to the product of the two masses and inversely proportional to the square of the distance between them: [10] Diagram of two masses attracting one another = where F is the force between the masses; G is the Newtonian constant of gravitation (6.674 × 10 −11 m 3 ⋅kg −1 ⋅s −2);
The Euclidean distance is the length of the displacement vector. The displacement in classical physics measures the change in position of an object during an interval of time. While distance is a scalar quantity, or a magnitude, displacement is a vector quantity with both magnitude and direction. In general, the vector measuring the difference ...
Newton's laws are often stated in terms of point or particle masses, that is, bodies whose volume is negligible. This is a reasonable approximation for real bodies when the motion of internal parts can be neglected, and when the separation between bodies is much larger than the size of each.
The Minkowski distance or Minkowski metric is a metric in a normed vector space which can be considered as a generalization of both the Euclidean distance and the Manhattan distance. It is named after the Polish mathematician Hermann Minkowski. Comparison of Chebyshev, Euclidean and taxicab distances for the hypotenuse of a 3-4-5 triangle on a ...
Similarity measure. In statistics and related fields, a similarity measure or similarity function or similarity metric is a real-valued function that quantifies the similarity between two objects. Although no single definition of a similarity exists, usually such measures are in some sense the inverse of distance metrics: they take on large ...