enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Euclidean division - Wikipedia

    en.wikipedia.org/wiki/Euclidean_division

    17 is divided into 3 groups of 5, with 2 as leftover. Here, the dividend is 17, the divisor is 3, the quotient is 5, and the remainder is 2 (which is strictly smaller than the divisor 3), or more symbolically, 17 = (3 × 5) + 2. In arithmetic, Euclidean division – or division with remainder – is the process of dividing one integer (the ...

  3. Euclidean algorithm - Wikipedia

    en.wikipedia.org/wiki/Euclidean_algorithm

    In mathematics, the Euclidean algorithm, [note 1] or Euclid's algorithm, is an efficient method for computing the greatest common divisor (GCD) of two integers (numbers), the largest number that divides them both without a remainder. It is named after the ancient Greek mathematician Euclid, who first described it in his Elements (c. 300 BC).

  4. Euclid's lemma - Wikipedia

    en.wikipedia.org/wiki/Euclid's_lemma

    Euclid's lemma. In algebra and number theory, Euclid's lemma is a lemma that captures a fundamental property of prime numbers: [note 1] Euclid's lemma — If a prime p divides the product ab of two integers a and b, then p must divide at least one of those integers a or b. For example, if p = 19, a = 133, b = 143, then ab = 133 × 143 = 19019 ...

  5. Division algorithm - Wikipedia

    en.wikipedia.org/wiki/Division_algorithm

    Long division is the standard algorithm used for pen-and-paper division of multi-digit numbers expressed in decimal notation. It shifts gradually from the left to the right end of the dividend, subtracting the largest possible multiple of the divisor (at the digit level) at each stage; the multiples then become the digits of the quotient, and the final difference is then the remainder.

  6. Greatest common divisor - Wikipedia

    en.wikipedia.org/wiki/Greatest_common_divisor

    Greatest common divisor. In mathematics, the greatest common divisor (GCD), also known as greatest common factor (GCF), of two or more integers, which are not all zero, is the largest positive integer that divides each of the integers. For two integers x, y, the greatest common divisor of x and y is denoted . For example, the GCD of 8 and 12 is ...

  7. Polynomial greatest common divisor - Wikipedia

    en.wikipedia.org/wiki/Polynomial_greatest_common...

    Polynomial greatest common divisor. In algebra, the greatest common divisor (frequently abbreviated as GCD) of two polynomials is a polynomial, of the highest possible degree, that is a factor of both the two original polynomials. This concept is analogous to the greatest common divisor of two integers. In the important case of univariate ...

  8. Euclidean domain - Wikipedia

    en.wikipedia.org/wiki/Euclidean_domain

    Euclidean domain. In mathematics, more specifically in ring theory, a Euclidean domain (also called a Euclidean ring) is an integral domain that can be endowed with a Euclidean function which allows a suitable generalization of the Euclidean division of integers. This generalized Euclidean algorithm can be put to many of the same uses as Euclid ...

  9. Ruffini's rule - Wikipedia

    en.wikipedia.org/wiki/Ruffini's_rule

    Ruffini's rule. In mathematics, Ruffini's rule is a method for computation of the Euclidean division of a polynomial by a binomial of the form x – r. It was described by Paolo Ruffini in 1809. [1] The rule is a special case of synthetic division in which the divisor is a linear factor.