Search results
Results from the WOW.Com Content Network
The theorem is frequently referred to as the division algorithm (although it is a theorem and not an algorithm), because its proof as given below lends itself to a simple division algorithm for computing q and r (see the section Proof for more). Division is not defined in the case where b = 0; see division by zero.
A division algorithm is an algorithm which, given two integers N and D (respectively the numerator and the denominator), computes their quotient and/or remainder, the result of Euclidean division. Some are applied by hand, while others are employed by digital circuit designs and software. Division algorithms fall into two main categories: slow ...
In the analysis of algorithms, the master theorem for divide-and-conquer recurrences provides an asymptotic analysis for many recurrence relations that occur in the analysis of divide-and-conquer algorithms. The approach was first presented by Jon Bentley, Dorothea Blostein (née Haken), and James B. Saxe in 1980, where it was described as a ...
Euclid's lemma. In algebra and number theory, Euclid's lemma is a lemma that captures a fundamental property of prime numbers: [note 1] Euclid's lemma — If a prime p divides the product ab of two integers a and b, then p must divide at least one of those integers a or b. For example, if p = 19, a = 133, b = 143, then ab = 133 × 143 = 19019 ...
Extended Euclidean algorithm also refers to a very similar algorithm for computing the polynomial greatest common divisor and the coefficients of Bézout's identity of two univariate polynomials. The extended Euclidean algorithm is particularly useful when a and b are coprime. With that provision, x is the modular multiplicative inverse of a ...
Stars and bars (combinatorics) In the context of combinatorial mathematics, stars and bars (also called "sticks and stones", [1] "balls and bars", [2] and "dots and dividers" [3]) is a graphical aid for deriving certain combinatorial theorems. It can be used to solve many simple counting problems, such as how many ways there are to put n ...
Animation showing the use of synthetic division to find the quotient of + + + by .Note that there is no term in , so the fourth column from the right contains a zero.. In algebra, synthetic division is a method for manually performing Euclidean division of polynomials, with less writing and fewer calculations than long division.
Polynomial long division is an algorithm that implements the Euclidean division of polynomials, which starting from two polynomials A (the dividend) and B (the divisor) produces, if B is not zero, a quotient Q and a remainder R such that. and either R = 0 or the degree of R is lower than the degree of B. These conditions uniquely define Q and R ...