enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Wien's displacement law - Wikipedia

    en.wikipedia.org/wiki/Wien's_displacement_law

    Formally, the wavelength version of Wien's displacement law states that the spectral radiance of black-body radiation per unit wavelength, peaks at the wavelength given by: = where T is the absolute temperature and b is a constant of proportionality called Wien's displacement constant, equal to 2.897 771 955... × 10 −3 m⋅K, [1] [2] or b ...

  3. Wien approximation - Wikipedia

    en.wikipedia.org/wiki/Wien_approximation

    Wien's approximation (also sometimes called Wien's law or the Wien distribution law) is a law of physics used to describe the spectrum of thermal radiation (frequently called the blackbody function). This law was first derived by Wilhelm Wien in 1896.

  4. Temperature - Wikipedia

    en.wikipedia.org/wiki/Temperature

    Eventually, they reach a state of mutual thermal equilibrium, in which heat transfer has ceased, and the bodies' respective state variables have settled to become unchanging. [ 87 ] [ 88 ] [ 89 ] One statement of the zeroth law of thermodynamics is that if two systems are each in thermal equilibrium with a third system, then they are also in ...

  5. Wien's law - Wikipedia

    en.wikipedia.org/wiki/Wien's_law

    Wien's law or Wien law may refer to: . Wien approximation, an equation used to describe the short-wavelength (high frequency) spectrum of thermal radiation; Wien's displacement law, an equation that describes the relationship between the temperature of an object and the peak wavelength or frequency of the emitted light

  6. Adiabatic invariant - Wikipedia

    en.wikipedia.org/wiki/Adiabatic_invariant

    Wien's law implicitly assumes that light is statistically composed of packets that change energy and frequency in the same way. The entropy of a Wien gas scales as the volume to the power N, where N is the number of packets. This led Einstein to suggest that light is composed of localizable particles with energy proportional to the frequency.

  7. Stefan–Boltzmann law - Wikipedia

    en.wikipedia.org/wiki/Stefan–Boltzmann_law

    The Stefan–Boltzmann law, also known as Stefan's law, describes the intensity of the thermal radiation emitted by matter in terms of that matter's temperature. It is named for Josef Stefan , who empirically derived the relationship, and Ludwig Boltzmann who derived the law theoretically.

  8. Pair-instability supernova - Wikipedia

    en.wikipedia.org/wiki/Pair-instability_supernova

    Photons given off by a body in thermal equilibrium have a black-body spectrum with an energy density proportional to the fourth power of the temperature, as described by the Stefan–Boltzmann law. Wien's law states that the wavelength of maximum emission from a black body is inversely proportional to its temperature. Equivalently, the ...

  9. Wilhelm Wien - Wikipedia

    en.wikipedia.org/wiki/Wilhelm_Wien

    Wilhelm Carl Werner Otto Fritz Franz Wien (German: [ˈvɪlhɛlm ˈviːn] ⓘ; 13 January 1864 – 30 August 1928) was a German physicist who, in 1893, used theories about heat and electromagnetism to deduce Wien's displacement law, which calculates the emission of a blackbody at any temperature from the emission at any one reference temperature.