Search results
Results from the WOW.Com Content Network
Multiply recursive problems are inherently recursive, because of prior state they need to track. One example is tree traversal as in depth-first search; though both recursive and iterative methods are used, [17] they contrast with list traversal and linear search in a list, which is a singly recursive and thus naturally iterative method.
A recursive step — a set of rules that reduces all successive cases toward the base case. For example, the following is a recursive definition of a person's ancestor. One's ancestor is either: One's parent (base case), or; One's parent's ancestor (recursive step). The Fibonacci sequence is another classic example of recursion: Fib(0) = 0 as ...
In computability theory, an undecidable problem is a decision problem for which an effective method (algorithm) to derive the correct answer does not exist. More formally, an undecidable problem is a problem whose language is not a recursive set ; see the article Decidable language .
These examples reduce easily to a single recursive function by inlining the forest function in the tree function, which is commonly done in practice: directly recursive functions that operate on trees sequentially process the value of the node and recurse on the children within one function, rather than dividing these into two separate functions.
Thus the halting problem is an example of a computably enumerable (c.e.) set, which is a set that can be enumerated by a Turing machine (other terms for computably enumerable include recursively enumerable and semidecidable). Equivalently, a set is c.e. if and only if it is the range of some computable function.
A total recursive function is a partial recursive function that is defined for every input. Every primitive recursive function is total recursive, but not all total recursive functions are primitive recursive. The Ackermann function A(m,n) is a well-known example of a total recursive function (in fact, provable total), that is not primitive ...
The divide-and-conquer paradigm is often used to find an optimal solution of a problem. Its basic idea is to decompose a given problem into two or more similar, but simpler, subproblems, to solve them in turn, and to compose their solutions to solve the given problem. Problems of sufficient simplicity are solved directly.
co-RE-complete is the set of decision problems that are complete for co-RE. In a sense, these are the complements of the hardest recursively enumerable problems. Examples of co-RE-complete problems: The domino problem for Wang tiles. The satisfiability problem for first-order logic.