enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Inverse trigonometric functions - Wikipedia

    en.wikipedia.org/wiki/Inverse_trigonometric...

    The most common convention is to name inverse trigonometric functions using an arc- prefix: arcsin(x), arccos(x), arctan(x), etc. [1] (This convention is used throughout this article.) This notation arises from the following geometric relationships: [ citation needed ] when measuring in radians, an angle of θ radians will correspond to an arc ...

  3. List of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/List_of_trigonometric...

    Trigonometric functions and their reciprocals on the unit circle. All of the right-angled triangles are similar, i.e. the ratios between their corresponding sides are the same.

  4. Inverse hyperbolic functions - Wikipedia

    en.wikipedia.org/wiki/Inverse_hyperbolic_functions

    A ray through the unit hyperbola = in the point (,), where is twice the area between the ray, the hyperbola, and the -axis. The earliest and most widely adopted symbols use the prefix arc-(that is: arcsinh, arccosh, arctanh, arcsech, arccsch, arccoth), by analogy with the inverse circular functions (arcsin, etc.).

  5. List of integrals of inverse trigonometric functions - Wikipedia

    en.wikipedia.org/wiki/List_of_integrals_of...

    The following is a list of indefinite integrals (antiderivatives) of expressions involving the inverse trigonometric functions.For a complete list of integral formulas, see lists of integrals.

  6. Table of polyhedron dihedral angles - Wikipedia

    en.wikipedia.org/wiki/Table_of_polyhedron...

    arccos (⁠ 1 / 3 ⁠) 70.529° Hexahedron or Cube {4,3} (4.4.4) arccos (0) = ⁠ π / 2 ⁠ 90° Octahedron {3,4} (3.3.3.3) arccos (-⁠ 1 / 3 ⁠) 109.471° Dodecahedron {5,3} (5.5.5) arccos (-⁠ √ 5 / 5 ⁠) 116.565° Icosahedron {3,5} (3.3.3.3.3) arccos (-⁠ √ 5 / 3 ⁠) 138.190° Kepler–Poinsot solids (regular nonconvex) Small ...

  7. CORDIC - Wikipedia

    en.wikipedia.org/wiki/CORDIC

    CORDIC (coordinate rotation digital computer), Volder's algorithm, Digit-by-digit method, Circular CORDIC (Jack E. Volder), [1] [2] Linear CORDIC, Hyperbolic CORDIC (John Stephen Walther), [3] [4] and Generalized Hyperbolic CORDIC (GH CORDIC) (Yuanyong Luo et al.), [5] [6] is a simple and efficient algorithm to calculate trigonometric functions, hyperbolic functions, square roots ...

  8. Proofs of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/Proofs_of_trigonometric...

    There are several equivalent ways for defining trigonometric functions, and the proofs of the trigonometric identities between them depend on the chosen definition. The oldest and most elementary definitions are based on the geometry of right triangles and the ratio between their sides.

  9. Trigonometric substitution - Wikipedia

    en.wikipedia.org/wiki/Trigonometric_substitution

    In the integral , we may use = ⁡, = ⁡, = ⁡. Then, = ⁡ ⁡ = ⁡ (⁡) = ⁡ ⁡ = = + = ⁡ +. The above step requires that > and ⁡ > We can choose to be the principal root of , and impose the restriction / < < / by using the inverse sine function.