Search results
Results from the WOW.Com Content Network
Together with supplemental equations (for example, conservation of mass) and well-formulated boundary conditions, the Navier–Stokes equations seem to model fluid motion accurately; even turbulent flows seem (on average) to agree with real world observations. The Navier–Stokes equations assume that the fluid being studied is a continuum (it ...
In mathematics, the Navier–Stokes equations are a system of nonlinear partial differential equations for abstract vector fields of any size. In physics and engineering, they are a system of equations that model the motion of liquids or non-rarefied gases (in which the mean free path is short enough so that it can be thought of as a continuum mean instead of a collection of particles) using ...
The Navier–Stokes equations govern the velocity and pressure of a fluid flow. In a turbulent flow, each of these quantities may be decomposed into a mean part and a fluctuating part. Averaging the equations gives the Reynolds-averaged Navier–Stokes (RANS) equations, which govern the mean flow.
In 1845, George Gabriel Stokes published another important set of equations, today known as the Navier-Stokes equations. [1] [11] Claude-Louis Navier developed the equations first using molecular theory, which was further confirmed by Stokes using continuum theory. [1] The Navier-Stokes equations describe the motion of fluids: [1]
The equation of motion for Stokes flow can be obtained by linearizing the steady state Navier–Stokes equations.The inertial forces are assumed to be negligible in comparison to the viscous forces, and eliminating the inertial terms of the momentum balance in the Navier–Stokes equations reduces it to the momentum balance in the Stokes equations: [1]
Navier–Stokes equation and the continuity equation [ edit ] In order to analytically find the stability of fluid flows, it is useful to note that hydrodynamic stability has a lot in common with stability in other fields, such as magnetohydrodynamics , plasma physics and elasticity ; although the physics is different in each case, the ...
The Navier–Stokes equations are based on the assumption that the fluid, at the scale of interest, is a continuum – a continuous substance rather than discrete particles. Another necessary assumption is that all the fields of interest including pressure , flow velocity , density , and temperature are at least weakly differentiable .
Simulation of two fluids with different viscosities. The development of fluid animation techniques based on the Navier–Stokes equations began in 1996, when Nick Foster and Dimitris Metaxas [3] implemented solutions to 3D Navier-Stokes equations in a computer graphics context, basing their work on a scientific CFD paper by Harlow and Welch from 1965. [4]