enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Amplitude - Wikipedia

    en.wikipedia.org/wiki/Amplitude

    The units of the amplitude depend on the type of wave, but are always in the same units as the oscillating variable. A more general representation of the wave equation is more complex, but the role of amplitude remains analogous to this simple case. For waves on a string, or in a medium such as water, the amplitude is a displacement.

  3. Boundary conditions in fluid dynamics - Wikipedia

    en.wikipedia.org/wiki/Boundary_conditions_in...

    Showing wall boundary condition. The most common boundary that comes upon in confined fluid flow problems is the wall of the conduit. The appropriate requirement is called the no-slip boundary condition, wherein the normal component of velocity is fixed at zero, and the tangential component is set equal to the velocity of the wall. [1]

  4. Vibration - Wikipedia

    en.wikipedia.org/wiki/Vibration

    Vibration (from Latin vibrāre 'to shake') is a mechanical phenomenon whereby oscillations occur about an equilibrium point.Vibration may be deterministic if the oscillations can be characterised precisely (e.g. the periodic motion of a pendulum), or random if the oscillations can only be analysed statistically (e.g. the movement of a tire on a gravel road).

  5. Dynamic pressure - Wikipedia

    en.wikipedia.org/wiki/Dynamic_pressure

    where (in SI units): q is the dynamic pressure in pascals (i.e., N/m 2, ρ (Greek letter rho) is the fluid mass density (e.g. in kg/m 3), and; u is the flow speed in m/s. It can be thought of as the fluid's kinetic energy per unit volume. For incompressible flow, the dynamic pressure of a fluid is the difference between its total pressure and ...

  6. Navier–Stokes equations - Wikipedia

    en.wikipedia.org/wiki/Navier–Stokes_equations

    The difference between them and the closely related Euler equations is that Navier–Stokes equations take viscosity into account while the Euler equations model only inviscid flow. As a result, the Navier–Stokes are an elliptic equation and therefore have better analytic properties, at the expense of having less mathematical structure (e.g ...

  7. Static pressure - Wikipedia

    en.wikipedia.org/wiki/Static_pressure

    A pressure can be identified for every point in a body of fluid, regardless of whether the fluid is in motion. Pressure can be measured using an aneroid, Bourdon tube, mercury column, or various other methods. The concepts of total pressure and dynamic pressure arise from Bernoulli's equation and are

  8. Dimensionless numbers in fluid mechanics - Wikipedia

    en.wikipedia.org/wiki/Dimensionless_numbers_in...

    Dimensionless numbers (or characteristic numbers) have an important role in analyzing the behavior of fluids and their flow as well as in other transport phenomena. [1] They include the Reynolds and the Mach numbers, which describe as ratios the relative magnitude of fluid and physical system characteristics, such as density, viscosity, speed of sound, and flow speed.

  9. Oscillation - Wikipedia

    en.wikipedia.org/wiki/Oscillation

    Oscillation is the repetitive or periodic variation, typically in time, of some measure about a central value (often a point of equilibrium) or between two or more different states. Familiar examples of oscillation include a swinging pendulum and alternating current. Oscillations can be used in physics to approximate complex interactions, such ...