enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Eigenvalue perturbation - Wikipedia

    en.wikipedia.org/wiki/Eigenvalue_perturbation

    In mathematics, an eigenvalue perturbation problem is that of finding the eigenvectors and eigenvalues of a system = that is perturbed from one with known eigenvectors and eigenvalues =. This is useful for studying how sensitive the original system's eigenvectors and eigenvalues x 0 i , λ 0 i , i = 1 , … n {\displaystyle x_{0i},\lambda _{0i ...

  3. Eigenvalues and eigenvectors - Wikipedia

    en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors

    Eigenvalue problems occur naturally in the vibration analysis of mechanical structures with many degrees of freedom. The eigenvalues are the natural frequencies (or eigenfrequencies) of vibration, and the eigenvectors are the shapes of these vibrational modes.

  4. Perturbation theory (quantum mechanics) - Wikipedia

    en.wikipedia.org/wiki/Perturbation_theory...

    No matter how small the perturbation is, in the degenerate subspace D the energy differences between the eigenstates of H are non-zero, so complete mixing of at least some of these states is assured. Typically, the eigenvalues will split, and the eigenspaces will become simple (one-dimensional), or at least of smaller dimension than D.

  5. Perturbation theory - Wikipedia

    en.wikipedia.org/wiki/Perturbation_theory

    In mathematics and applied mathematics, perturbation theory comprises methods for finding an approximate solution to a problem, by starting from the exact solution of a related, simpler problem. [ 1 ] [ 2 ] A critical feature of the technique is a middle step that breaks the problem into "solvable" and "perturbative" parts. [ 3 ]

  6. Weyl's inequality - Wikipedia

    en.wikipedia.org/wiki/Weyl's_inequality

    Therefore, Weyl's eigenvalue perturbation inequality for Hermitian matrices extends naturally to perturbation of singular values. [1] This result gives the bound for the perturbation in the singular values of a matrix M {\displaystyle M} due to an additive perturbation Δ {\displaystyle \Delta } :

  7. Degenerate energy levels - Wikipedia

    en.wikipedia.org/wiki/Degenerate_energy_levels

    It involves expanding the eigenvalues and eigenkets of the Hamiltonian H in a perturbation series. The degenerate eigenstates with a given energy eigenvalue form a vector subspace, but not every basis of eigenstates of this space is a good starting point for perturbation theory, because typically there would not be any eigenstates of the ...

  8. Variational method (quantum mechanics) - Wikipedia

    en.wikipedia.org/wiki/Variational_method...

    Suppose we are given a Hilbert space and a Hermitian operator over it called the Hamiltonian.Ignoring complications about continuous spectra, we consider the discrete spectrum of and a basis of eigenvectors {| } (see spectral theorem for Hermitian operators for the mathematical background): | =, where is the Kronecker delta = {, =, and the {| } satisfy the eigenvalue equation | = | .

  9. Rayleigh–Ritz method - Wikipedia

    en.wikipedia.org/wiki/Rayleigh–Ritz_method

    An alternative approach, e.g., defining the normal matrix as = of size , takes advantage of the fact that for a given matrix with orthonormal columns the eigenvalue problem of the Rayleigh–Ritz method for the matrix = = can be interpreted as a singular value problem for the matrix . This interpretation allows simple simultaneous calculation ...