Search results
Results from the WOW.Com Content Network
The atmosphere is one of the Earth's major carbon reservoirs and holds approximately 720 gigatons of carbon as of year 2000. [2] The concentration of mostly carbon-based greenhouse gases has increased dramatically since the onset of the industrial era. This makes an understanding of the carbon component of the atmosphere highly important.
The exosphere is the outermost layer of Earth's atmosphere (though it is so tenuous that some scientists consider it to be part of interplanetary space rather than part of the atmosphere). It extends from the thermopause (also known as the "exobase") at the top of the thermosphere to a poorly defined boundary with the solar wind and ...
The atmosphere envelops the earth and extends hundreds of kilometres from the surface. It consists mostly of inert nitrogen (78%), oxygen (21%) and argon (0.9%). [4] Some trace gases in the atmosphere, such as water vapour and carbon dioxide, are the gases most important for the workings of the climate system, as they are greenhouse gases which allow visible light from the Sun to penetrate to ...
The earth’s atmosphere has several layers, what NASA calls “a multi-layered cake. We live in the troposphere, which in the U.S. extends about 6 miles above the earth’s surface. It’s where ...
These changes to the human sub-system have a direct influence on all components of the Earth system. The chemical composition of the atmosphere has changed significantly. Concentrations of important greenhouse gases, carbon dioxide, methane and nitrous oxide are rising fast. Over Antarctica a large hole in the ozone layer appeared. Fisheries ...
Atmospheric physics is the application of physics to the study of the atmosphere. Atmospheric physicists attempt to model Earth's atmosphere and the atmospheres of the other planets using fluid flow equations, chemical models, radiation balancing, and energy transfer processes in the atmosphere and underlying oceans and land.
Energy flows between space, the atmosphere, and Earth's surface. Most sunlight passes through the atmosphere to heat the Earth's surface, then greenhouse gases absorb most of the heat the Earth radiates in response. Adding to greenhouse gases increases this insulating effect, causing an energy imbalance that heats the planet up.
Atmospheric carbon dioxide plays an integral role in the Earth's carbon cycle whereby CO 2 is removed from the atmosphere by some natural processes such as photosynthesis and deposition of carbonates, to form limestones for example, and added back to the atmosphere by other natural processes such as respiration and the acid dissolution of ...