Search results
Results from the WOW.Com Content Network
If a cyclic quadrilateral has side lengths that form an arithmetic progression the quadrilateral is also ex-bicentric. If the opposite sides of a cyclic quadrilateral are extended to meet at E and F, then the internal angle bisectors of the angles at E and F are perpendicular. [13]
Ptolemy's theorem is a relation among these lengths in a cyclic quadrilateral. = + In Euclidean geometry, Ptolemy's theorem is a relation between the four sides and two diagonals of a cyclic quadrilateral (a quadrilateral whose vertices lie on a common circle).
[15] [16] The right kites are exactly the kites that are cyclic quadrilaterals, meaning that there is a circle that passes through all their vertices. [17] The cyclic quadrilaterals may equivalently defined as the quadrilaterals in which two opposite angles are supplementary (they add to 180°); if one pair is supplementary the other is as well ...
In Euclidean geometry, a right kite is a kite (a quadrilateral whose four sides can be grouped into two pairs of equal-length sides that are adjacent to each other) that can be inscribed in a circle. [1] That is, it is a kite with a circumcircle (i.e., a cyclic kite). Thus the right kite is a convex quadrilateral and has two opposite right ...
In geometry, Brahmagupta's theorem states that if a cyclic quadrilateral is orthodiagonal (that is, has perpendicular diagonals), then the perpendicular to a side from the point of intersection of the diagonals always bisects the opposite side. [1] It is named after the Indian mathematician Brahmagupta (598-668). [2]
A convex quadrilateral is cyclic if and only if opposite angles sum to 180°. Right kite: a kite with two opposite right angles. It is a type of cyclic quadrilateral. Harmonic quadrilateral: a cyclic quadrilateral such that the products of the lengths of the opposing sides are equal. Bicentric quadrilateral: it is both tangential and cyclic.
Ptolemy's inequality is often stated for a special case, in which the four points are the vertices of a convex quadrilateral, given in cyclic order. [2] [3] However, the theorem applies more generally to any four points; it is not required that the quadrilateral they form be convex, simple, or even planar.
A special case of the theorem is Thales' theorem, which states that the angle subtended by a diameter is always 90°, i.e., a right angle. As a consequence of the theorem, opposite angles of cyclic quadrilaterals sum to 180°; conversely, any quadrilateral