enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Theoretical gravity - Wikipedia

    en.wikipedia.org/wiki/Theoretical_gravity

    For the mass attraction effect by itself, the gravitational acceleration at the equator is about 0.18% less than that at the poles due to being located farther from the mass center. When the rotational component is included (as above), the gravity at the equator is about 0.53% less than that at the poles, with gravity at the poles being ...

  3. Gravitational constant - Wikipedia

    en.wikipedia.org/wiki/Gravitational_constant

    The gravitational constant G is a key quantity in Newton's law of universal gravitation.. The gravitational constant is an empirical physical constant involved in the calculation of gravitational effects in Sir Isaac Newton's law of universal gravitation and in Albert Einstein's theory of general relativity.

  4. Gauss (unit) - Wikipedia

    en.wikipedia.org/wiki/Gauss_(unit)

    The gauss is the unit of magnetic flux density B in the system of Gaussian units and is equal to Mx/cm 2 or g/Bi/s 2, while the oersted is the unit of H-field. One tesla (T) corresponds to 10 4 gauss, and one ampere (A) per metre corresponds to 4π × 10 −3 oersted .

  5. Newton's law of universal gravitation - Wikipedia

    en.wikipedia.org/wiki/Newton's_law_of_universal...

    It is a generalisation of the vector form, which becomes particularly useful if more than two objects are involved (such as a rocket between the Earth and the Moon). For two objects (e.g. object 2 is a rocket, object 1 the Earth), we simply write r instead of r 12 and m instead of m 2 and define the gravitational field g(r) as:

  6. Standard gravity - Wikipedia

    en.wikipedia.org/wiki/Standard_gravity

    [1] [2] The acceleration of a body near the surface of the Earth is due to the combined effects of gravity and centrifugal acceleration from the rotation of the Earth (but the latter is small enough to be negligible for most purposes); the total (the apparent gravity) is about 0.5% greater at the poles than at the Equator. [3] [4]

  7. g-force - Wikipedia

    en.wikipedia.org/wiki/G-force

    The unit definition does not vary with location—the g-force when standing on the Moon is almost exactly 1 ⁄ 6 that on Earth. The unit g is not one of the SI units, which uses "g" for gram. Also, "g" should not be confused with "G", which is the standard symbol for the gravitational constant. [6]

  8. Gravitational field - Wikipedia

    en.wikipedia.org/wiki/Gravitational_field

    Determined in this way, the gravitational field g around a single particle of mass M is a vector field consisting at every point of a vector pointing directly towards the particle. The magnitude of the field at every point is calculated by applying the universal law, and represents the force per unit mass on any object at that point in space.

  9. Gravity of Earth - Wikipedia

    en.wikipedia.org/wiki/Gravity_of_Earth

    The gravity g′ at depth d is given by g′ = g(1 − d/R) where g is acceleration due to gravity on the surface of the Earth, d is depth and R is the radius of the Earth. If the density decreased linearly with increasing radius from a density ρ 0 at the center to ρ 1 at the surface, then ρ(r) = ρ 0 − (ρ 0 − ρ 1) r / R, and the ...