enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Spiral array model - Wikipedia

    en.wikipedia.org/wiki/Spiral_array_model

    Spiral array model: pitch class, major/minor chord, and major/minor key helices. The model as proposed covers basic pitches, major chords, minor chords, major keys and minor keys, represented on five concentric helices. Starting with a formulation of the pitch helix, inner helices are generated as convex combinations of points on outer ones.

  3. Hallade method - Wikipedia

    en.wikipedia.org/wiki/Hallade_method

    This formula is also true for other units of measurement such as in feet. The relationship of versine, chord and radius is derived from the Pythagorean theorem. Based on the diagram on the right: = We can replace OC with r (radius) minus v, OA with r and AC with L/2 (half a chord).

  4. Circular segment - Wikipedia

    en.wikipedia.org/wiki/Circular_segment

    A circular segment (in green) is enclosed between a secant/chord (the dashed line) and the arc whose endpoints equal the chord's (the arc shown above the green area). In geometry, a circular segment or disk segment (symbol: ⌓) is a region of a disk [1] which is "cut off" from the rest of the disk by a straight line.

  5. Chord (geometry) - Wikipedia

    en.wikipedia.org/wiki/Chord_(geometry)

    Equal chords are subtended by equal angles from the center of the circle. A chord that passes through the center of a circle is called a diameter and is the longest chord of that specific circle. If the line extensions (secant lines) of chords AB and CD intersect at a point P, then their lengths satisfy AP·PB = CP·PD (power of a point theorem).

  6. Circle - Wikipedia

    en.wikipedia.org/wiki/Circle

    The angle between a chord and the tangent at one of its endpoints is equal to one half the angle subtended at the centre of the circle, on the opposite side of the chord (tangent chord angle). If the angle subtended by the chord at the centre is 90°, then ℓ = r √2, where ℓ is the length of the chord, and r is the radius of the circle.

  7. Neo-Riemannian theory - Wikipedia

    en.wikipedia.org/wiki/Neo-Riemannian_theory

    These transformations are purely harmonic, and do not need any particular voice leading between chords: all instances of motion from a C major to a C minor triad represent the same neo-Riemannian transformation, no matter how the voices are distributed in register. Neo-Riemannian music theory's PLR operations applied to a minor chord Q.

  8. Dividing a circle into areas - Wikipedia

    en.wikipedia.org/wiki/Dividing_a_circle_into_areas

    The number of points (n), chords (c) and regions (r G) for first 6 terms of Moser's circle problem. In geometry, the problem of dividing a circle into areas by means of an inscribed polygon with n sides in such a way as to maximise the number of areas created by the edges and diagonals, sometimes called Moser's circle problem (named after Leo Moser), has a solution by an inductive method.

  9. Degree of curvature - Wikipedia

    en.wikipedia.org/wiki/Degree_of_curvature

    Where degree of curvature is based on 100 units of arc length, the conversion between degree of curvature and radius is Dr = 18000/π ≈ 5729.57795, where D is degree and r is radius. Since rail routes have very large radii, they are laid out in chords, as the difference to the arc is inconsequential; this made work easier before electronic ...