Search results
Results from the WOW.Com Content Network
The value of the two products in the chord theorem depends only on the distance of the intersection point S from the circle's center and is called the absolute value of the power of S; more precisely, it can be stated that: | | | | = | | | | = where r is the radius of the circle, and d is the distance between the center of the circle and the ...
Concerning norms for the progression of chords in time the third aspect focuses on the relationship between chords. The patterning of chords in a cadence for example indicates a movement from a V chord to a I chord. The fact that the I chord is perceived as a resting point in a musical phrase implicates, that the single chords built up on notes ...
Equal chords are subtended by equal angles from the center of the circle. A chord that passes through the center of a circle is called a diameter and is the longest chord of that specific circle. If the line extensions (secant lines) of chords AB and CD intersect at a point P, then their lengths satisfy AP·PB = CP·PD (power of a point theorem).
A circular segment (in green) is enclosed between a secant/chord (the dashed line) and the arc whose endpoints equal the chord's (the arc shown above the green area). In geometry, a circular segment or disk segment (symbol: ⌓) is a region of a disk [1] which is "cut off" from the rest of the disk by a straight line.
The angle between a chord and the tangent at one of its endpoints is equal to one half the angle subtended at the centre of the circle, on the opposite side of the chord (tangent chord angle). If the angle subtended by the chord at the centre is 90°, then ℓ = r √2, where ℓ is the length of the chord, and r is the radius of the circle.
The concept of harmonic function originates in theories about just intonation.It was realized that three perfect major triads, distant from each other by a perfect fifth, produced the seven degrees of the major scale in one of the possible forms of just intonation: for instance, the triads F–A–C, C–E–G and G–B–D (subdominant, tonic, and dominant respectively) produce the seven ...
For example, the proximity of the C major and e minor chords reflects the fact that the two chords share two common tones, E and G. Moreover, one chord can be transformed into another by moving a single note by just one semitone: to transform a C major chord into an E minor chord, one need only move C to B.
A chord diagram may refer to: Chord diagram (music) , a diagram showing the fingering of a chord on a guitar or other fretted musical instrument Chord diagram (information visualization) , a diagram showing a many-to-many relationship between objects as curved arcs within a circle