Search results
Results from the WOW.Com Content Network
A Punnett square showing a typical test cross. (green pod color is dominant over yellow for pea pods [1] in contrast to pea seeds, where yellow cotyledon color is dominant over green [2]). Punnett squares for each combination of parents' colour vision status giving probabilities of their offsprings' status, each cell having 25% probability in ...
Punnett squares showing typical test crosses and the two potential outcomes. The individual in question may either be heterozygous, in which half the offspring would be heterozygous and half would be homozygous recessive, or homozygous dominant, in which all the offspring would be heterozygous.
Punnett square: If the other parent does not have the recessive genetic disposition, it does not appear in the phenotype of the children, but on the average 50% of them become carriers. A hereditary carrier ( genetic carrier or just carrier ), is a person or other organism that has inherited a recessive allele for a genetic trait or mutation ...
In a dominant-recessive inheritance, an average of 25% are homozygous with the dominant trait, 50% are heterozygous showing the dominant trait in the phenotype (genetic carriers), 25% are homozygous with the recessive trait and therefore express the recessive trait in the phenotype. The genotypic ratio is 1: 2 : 1, and the phenotypic ratio is 3: 1.
Dihybrid crosses are easily visualized using a 4 x 4 Punnett square. In these squares, the dominant traits are uppercase, and the recessive traits of the same characteristic is lowercase. In the following case the example of pea plant seed is chosen. The two characteristics being compared are; Shape: round or wrinkled (Round (R) is dominant)
When the tall allele was present, the plant would be tall, even if the plant was heterozygous. In order for the plant to be short, it had to be homozygous for the recessive allele. [8] [9] One way this can be illustrated is using a Punnett square. In a Punnett square, the genotypes of the parents are placed on the outside.
However, when they crossed a red-eyed male with a white-eyed female, the male offspring had white eyes while the female offspring had red eyes. The reason was that the white eye allele is sex-linked (more specifically, on the X chromosome) and recessive. The analysis can be more easily shown with Punnett squares:
Original – Example of a Punnett square. In this example in peas, the color yellow is determined by the dominant allele Y and the color green is determined by a recessive allele y. Reason This is a well done image of a Punnett square that effectively illustrates the topic and has high EV and relevance in the articles that it is used in.