Search results
Results from the WOW.Com Content Network
A Wind generated current is a flow in a body of water that is generated by wind friction on its surface. Wind can generate surface currents on water bodies of any size. The depth and strength of the current depend on the wind strength and duration, and on friction and viscosity losses, [1] but are limited to about 400 m depth by the mechanism, and to lesser depths where the water is shallower. [2]
A summary of the path of the thermohaline circulation. Blue paths represent deep-water currents, while red paths represent surface currents. Thermohaline circulation. Thermohaline circulation (THC) is a part of the large-scale ocean circulation that is driven by global density gradients created by surface heat and freshwater fluxes.
Surface oceanic currents are driven by wind currents, the large scale prevailing winds drive major persistent ocean currents, and seasonal or occasional winds drive currents of similar persistence to the winds that drive them, [6] and the Coriolis effect plays a major role in their development. [7]
The AMOC includes Atlantic currents at the surface and at great depths that are driven by changes in weather, temperature and salinity. Those currents comprise half of the global thermohaline circulation that includes the flow of major ocean currents, the other half being the Southern Ocean overturning circulation. [2]
As a part of the global conveyor belt – a constantly moving system of deep-ocean circulation driven by temperature and salinity – it also carries nutrients necessary to sustain ocean life ...
The atmospheric circulation can be viewed as a heat engine driven by the Sun's energy and whose energy sink, ultimately, is the blackness of space. The work produced by that engine causes the motion of the masses of air, and in that process it redistributes the energy absorbed by the Earth's surface near the tropics to the latitudes nearer the ...
Though the following theory technically applies to the idealized situation involving only wind forces, Ekman motion describes the wind-driven portion of circulation seen in the surface layer. [5] [6] Surface currents flow at a 45° angle to the wind due to a balance between the Coriolis force and the drags generated by the wind and the water. [7]
The circumpolar current is driven by the strong westerly winds in the latitudes of the Southern Ocean. The ACC (red circle near the middle of the image) in relation to the global thermohaline circulation. In latitudes where there are continents, winds blowing on light surface water can simply pile up light water against these continents.