Search results
Results from the WOW.Com Content Network
The longest common substrings of a set of strings can be found by building a generalized suffix tree for the strings, and then finding the deepest internal nodes which have leaf nodes from all the strings in the subtree below it. The figure on the right is the suffix tree for the strings "ABAB", "BABA" and "ABBA", padded with unique string ...
The similarity of two strings and is determined by this formula: twice the number of matching characters divided by the total number of characters of both strings. The matching characters are defined as some longest common substring [3] plus recursively the number of matching characters in the non-matching regions on both sides of the longest common substring: [2] [4]
In information theory, the Hamming distance between two strings or vectors of equal length is the number of positions at which the corresponding symbols are different. In other words, it measures the minimum number of substitutions required to change one string into the other, or equivalently, the minimum number of errors that could have transformed one string into the other.
After computing E(i, j) for all i and j, we can easily find a solution to the original problem: it is the substring for which E(m, j) is minimal (m being the length of the pattern P.) Computing E(m, j) is very similar to computing the edit distance between two strings.
"Given two genomes A and B, Maximal Unique Match (MUM) substring is a common substring of A and B of length longer than a specified minimum length d (by default d = 20) such that it is maximal, that is, it cannot be extended on either end without incurring a mismatch and; it is unique in both sequences" [2]
If is a substring of , it is also a subsequence, which is a more general concept. The occurrences of a given pattern in a given string can be found with a string searching algorithm. Finding the longest string which is equal to a substring of two or more strings is known as the longest common substring problem.
Ukkonen's 1985 algorithm takes a string p, called the pattern, and a constant k; it then builds a deterministic finite state automaton that finds, in an arbitrary string s, a substring whose edit distance to p is at most k [13] (cf. the Aho–Corasick algorithm, which similarly constructs an automaton to search for any of a number of patterns ...
A longest common subsequence (LCS) is the longest subsequence common to all sequences in a set of sequences (often just two sequences). It differs from the longest common substring : unlike substrings, subsequences are not required to occupy consecutive positions within the original sequences.