Search results
Results from the WOW.Com Content Network
Geometric realization of a 3-dimensional abstract simplicial complex. In combinatorics, an abstract simplicial complex (ASC), often called an abstract complex or just a complex, is a family of sets that is closed under taking subsets, i.e., every subset of a set in the family is also in the family.
Download as PDF; Printable version; In other projects ... The dimension of an abstract simplicial complex is defined ... The formula can be found by examining the ...
Every flag complex is a clique complex: given a flag complex, define a graph G on the set of all vertices, where two vertices u,v are adjacent in G iff {u,v} is in the complex (this graph is called the 1-skeleton of the complex). By definition of a flag complex, every set of vertices that are pairwise-connected, is in the complex.
In topology, the Vietoris–Rips complex, also called the Vietoris complex or Rips complex, is a way of forming a topological space from distances in a set of points. It is an abstract simplicial complex that can be defined from any metric space M and distance δ by forming a simplex for every finite set of points that has diameter at most δ.
Formally, a Δ-set is a sequence of sets {} = together with maps : + for each and =,, …, +, that satisfy + = + whenever <.Often, the superscript of is omitted for brevity.. This definition generalizes the notion of a simplicial complex, where the are the sets of n-simplices, and the are the associated face maps, each mapping the -th face of a simplex in + to a simplex in .
A simplicial 3-complex. In mathematics, a simplicial complex is a set composed of points, line segments, triangles, and their n-dimensional counterparts (see illustration). Simplicial complexes should not be confused with the more abstract notion of a simplicial set appearing in modern simplicial homotopy theory.
Here H i might be the simplicial homology, or more generally the singular homology. The usual proof of this result is a pure piece of homological algebra about chain complexes of free abelian groups. The form of the result is that other coefficients A may be used, at the cost of using a Tor functor.
In mathematics, and specifically in topology, a CW complex (also cellular complex or cell complex) is a topological space that is built by gluing together topological balls (so-called cells) of different dimensions in specific ways. It generalizes both manifolds and simplicial complexes and has particular significance for algebraic topology. [1]