Search results
Results from the WOW.Com Content Network
In mathematics, summation is the addition of a sequence of numbers, called addends or summands; the result is their sum or total.Beside numbers, other types of values can be summed as well: functions, vectors, matrices, polynomials and, in general, elements of any type of mathematical objects on which an operation denoted "+" is defined.
3 + 2 = 5 with apples, a popular choice in textbooks [1] Addition (usually signified by the plus symbol +) is one of the four basic operations of arithmetic, the other three being subtraction, multiplication and division. [2] The addition of two whole numbers results in the total amount or sum of those values combined. The example in the ...
In mathematics, the infinite series 1 / 2 + 1 / 4 + 1 / 8 + 1 / 16 + ··· is an elementary example of a geometric series that converges absolutely. The sum of the series is 1. In summation notation, this may be expressed as
A running total or rolling total is the summation of a sequence of numbers which is updated each time a new number is added to the sequence, by adding the value of the new number to the previous running total. Another term for it is partial sum. The purposes of a running total are twofold. First, it allows the total to be stated at any point in ...
d is the number of positive divisors of n, including 1 and n itself; σ is the sum of the positive divisors of n, including 1 and n itself; s is the sum of the proper divisors of n, including 1 but not n itself; that is, s(n) = σ(n) − n; a deficient number is greater than the sum of its proper divisors; that is, s(n) < n
A number where some but not all prime factors have multiplicity above 1 is neither square-free nor squareful. The Liouville function λ(n) is 1 if Ω(n) is even, and is -1 if Ω(n) is odd. The Möbius function μ(n) is 0 if n is not square-free. Otherwise μ(n) is 1 if Ω(n) is even, and is −1 if Ω(n) is odd.
Computation of the sum 2 + 5 + 8 + 11 + 14. When the sequence is reversed and added to itself term by term, the resulting sequence has a single repeated value in it, equal to the sum of the first and last numbers (2 + 14 = 16). Thus 16 × 5 = 80 is twice the sum.
Prefix sums are trivial to compute in sequential models of computation, by using the formula y i = y i − 1 + x i to compute each output value in sequence order. However, despite their ease of computation, prefix sums are a useful primitive in certain algorithms such as counting sort, [1] [2] and they form the basis of the scan higher-order function in functional programming languages.