Search results
Results from the WOW.Com Content Network
A subgroup H of finite index in a group G (finite or infinite) always contains a normal subgroup N (of G), also of finite index. In fact, if H has index n, then the index of N will be some divisor of n! and a multiple of n; indeed, N can be taken to be the kernel of the natural homomorphism from G to the permutation group of the left (or right ...
The subgroup H contains only 0 and 4, and is isomorphic to /. There are four left cosets of H: H itself, 1 + H, 2 + H, and 3 + H (written using additive notation since this is an additive group). Together they partition the entire group G into equal-size, non-overlapping sets. The index [G : H] is 4.
The subgroup H contains only 0 and 4, and is isomorphic to /. There are four left cosets of H: H itself, 1+H, 2+H, and 3+H (written using additive notation since this is an additive group). Together they partition the entire group G into equal-size, non-overlapping sets. Thus the index [G : H] is 4.
For a finite subgroup H of a finite group G, the index of H in G is equal to the quotient of the orders of G and H. isomorphism Given two groups (G, •) and (H, ·), an isomorphism between G and H is a bijective homomorphism from G to H, that is, a one-to-one correspondence between the elements of the groups in a way that respects the given ...
A subgroup H of a group G is called a characteristic subgroup if for every automorphism φ of G, one has φ(H) ≤ H; then write H char G. It would be equivalent to require the stronger condition φ(H) = H for every automorphism φ of G, because φ −1 (H) ≤ H implies the reverse inclusion H ≤ φ(H).
More generally, a subgroup, , of finite index, , in contains a subgroup, , normal in and of index dividing ! called the normal core. In particular, if p {\displaystyle p} is the smallest prime dividing the order of G {\displaystyle G} , then every subgroup of index p {\displaystyle p} is normal.
If H is a subgroup of G, then N G (H) contains H. If H is a subgroup of G, then the largest subgroup of G in which H is normal is the subgroup N G (H). If S is a subset of G such that all elements of S commute with each other, then the largest subgroup of G whose center contains S is the subgroup C G (S). A subgroup H of a group G is called a ...
One proof of the existence of Sylow p-subgroups is constructive: if H is a p-subgroup of G and the index [G:H] is divisible by p, then the normalizer N = N G (H) of H in G is also such that [N : H] is divisible by p.