enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Darcy–Weisbach equation - Wikipedia

    en.wikipedia.org/wiki/DarcyWeisbach_equation

    The equation is named after Henry Darcy and Julius Weisbach. Currently, there is no formula more accurate or universally applicable than the Darcy-Weisbach supplemented by the Moody diagram or Colebrook equation. [1] The Darcy–Weisbach equation contains a dimensionless friction factor, known as the Darcy friction factor. This is also ...

  3. Darcy friction factor formulae - Wikipedia

    en.wikipedia.org/wiki/Darcy_friction_factor_formulae

    In fluid dynamics, the Darcy friction factor formulae are equations that allow the calculation of the Darcy friction factor, a dimensionless quantity used in the Darcy–Weisbach equation, for the description of friction losses in pipe flow as well as open-channel flow.

  4. Moody chart - Wikipedia

    en.wikipedia.org/wiki/Moody_chart

    In engineering, the Moody chart or Moody diagram (also Stanton diagram) is a graph in non-dimensional form that relates the Darcy–Weisbach friction factor f D, Reynolds number Re, and surface roughness for fully developed flow in a circular pipe. It can be used to predict pressure drop or flow rate down such a pipe.

  5. Darcy's law - Wikipedia

    en.wikipedia.org/wiki/Darcy's_law

    A number of papers have utilized Darcy's law to model the physics of brewing in a moka pot, specifically how the hot water percolates through the coffee grinds under pressure, starting with a 2001 paper by Varlamov and Balestrino, [6] and continuing with a 2007 paper by Gianino, [7] a 2008 paper by Navarini et al., [8] and a 2008 paper by W ...

  6. Timeline of fluid and continuum mechanics - Wikipedia

    en.wikipedia.org/wiki/Timeline_of_fluid_and...

    1950 – James G. Oldroyd introduces the Oldroyd-B model of viscoelasticity. [61] 1944 – Lewis Ferry Moody plots Darcy–Weisbach friction factor against Reynolds number for various values of relative roughness, leading to the first Moody chart. [1]

  7. Bingham plastic - Wikipedia

    en.wikipedia.org/wiki/Bingham_plastic

    The Swamee–Aggarwal equation is used to solve directly for the Darcy–Weisbach friction factor f for laminar flow of Bingham plastic fluids. [8] It is an approximation of the implicit Buckingham–Reiner equation, but the discrepancy from experimental data is well within the accuracy of the data. The Swamee–Aggarwal equation is given by:

  8. Friction loss - Wikipedia

    en.wikipedia.org/wiki/Friction_loss

    Under turbulent flow, the friction loss is found to be roughly proportional to the square of the flow velocity and inversely proportional to the pipe diameter, that is, the friction loss follows the phenomenological Darcy–Weisbach equation in which the hydraulic slope S can be expressed [9]

  9. Pipe network analysis - Wikipedia

    en.wikipedia.org/wiki/Pipe_network_analysis

    Once the friction factors of the pipes are obtained (or calculated from pipe friction laws such as the Darcy-Weisbach equation), we can consider how to calculate the flow rates and head losses on the network. Generally the head losses (potential differences) at each node are neglected, and a solution is sought for the steady-state flows on the ...