enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Breadth-first search - Wikipedia

    en.wikipedia.org/wiki/Breadth-first_search

    If G is a tree, replacing the queue of this breadth-first search algorithm with a stack will yield a depth-first search algorithm. For general graphs, replacing the stack of the iterative depth-first search implementation with a queue would also produce a breadth-first search algorithm, although a somewhat nonstandard one. [10]

  3. Depth-first search - Wikipedia

    en.wikipedia.org/wiki/Depth-first_search

    If G is a tree, replacing the queue of the breadth-first search algorithm with a stack will yield a depth-first search algorithm. For general graphs, replacing the stack of the iterative depth-first search implementation with a queue would also produce a breadth-first search algorithm, although a somewhat nonstandard one. [7]

  4. Parallel breadth-first search - Wikipedia

    en.wikipedia.org/wiki/Parallel_breadth-first_search

    The breadth-first-search algorithm is a way to explore the vertices of a graph layer by layer. It is a basic algorithm in graph theory which can be used as a part of other graph algorithms. For instance, BFS is used by Dinic's algorithm to find maximum flow in a graph.

  5. Tree traversal - Wikipedia

    en.wikipedia.org/wiki/Tree_traversal

    In depth-first search (DFS), the search tree is deepened as much as possible before going to the next sibling. To traverse binary trees with depth-first search, perform the following operations at each node: [3] [4] If the current node is empty then return. Execute the following three operations in a certain order: [5] N: Visit the current node.

  6. Graph traversal algorithms - Wikipedia

    en.wikipedia.org/wiki/Graph_traversal

    A depth-first search (DFS) is an algorithm for traversing a finite graph. DFS visits the child vertices before visiting the sibling vertices; that is, it traverses the depth of any particular path before exploring its breadth. A stack (often the program's call stack via recursion) is generally used when implementing the algorithm.

  7. Iterative deepening depth-first search - Wikipedia

    en.wikipedia.org/wiki/Iterative_deepening_depth...

    IDDFS achieves breadth-first search's completeness (when the branching factor is finite) using depth-first search's space-efficiency. If a solution exists, it will find a solution path with the fewest arcs. [2] Iterative deepening visits states multiple times, and it may seem wasteful.

  8. Lexicographic breadth-first search - Wikipedia

    en.wikipedia.org/wiki/Lexicographic_breadth...

    The algorithm is different from a breadth-first search, but it produces an ordering that is consistent with breadth-first search. The lexicographic breadth-first search algorithm is based on the idea of partition refinement and was first developed by Donald J. Rose, Robert E. Tarjan, and George S. Lueker .

  9. Reachability - Wikipedia

    en.wikipedia.org/wiki/Reachability

    If you have only one (or a few) queries to make, it may be more efficient to forgo the use of more complex data structures and compute the reachability of the desired pair directly. This can be accomplished in linear time using algorithms such as breadth first search or iterative deepening depth-first search. [4]