Search results
Results from the WOW.Com Content Network
An LPCI is an emergency system which consists of a pump that injects a coolant into the reactor vessel once it has been depressurized. In some nuclear power plants an LPCI is a mode of operation of a residual heat removal system, also known as an RHR or RHS but is generally called LPCI. It is also not a stand-alone valve or system.
The Fukushima Daiichi nuclear disaster in 2011 occurred due to a loss-of-coolant accident. The circuits that provided electrical power to the coolant pumps failed causing a loss-of-core-cooling that was critical for the removal of residual decay heat which is produced even after active reactors are shut down and nuclear fission has ceased.
The Reactor Protection System (RPS) is a system, computerized in later BWR models, that is designed to automatically, rapidly, and completely shut down and make safe the Nuclear Steam Supply System (NSSS – the reactor pressure vessel, pumps, and water/steam piping within the containment) if some event occurs that could result in the reactor entering an unsafe operating condition.
Passive nuclear safety is a design approach for safety features, implemented in a nuclear reactor, that does not require any active intervention on the part of the operator or electrical/electronic feedback in order to bring the reactor to a safe shutdown state, in the event of a particular type of emergency (usually overheating resulting from a loss of coolant or loss of coolant flow).
When pressure control is lost in a reactor plant, depending on the level of heat being generated by the reactor plant, the heat being removed by the steam or other auxiliary systems, the initial pressure, and the normal operating temperature of the plant, it could take minutes or even hours for operators to see significant trends in core behaviour.
Following the reactor SCRAM, operators activated the reactor core isolation cooling system (RCIC) and the residual heat removal system and core spray systems were made available to cool the suppression pool; whether they were activated prior to the tsunami has not been made clear. The RHRS and CS pumps were knocked out of commission by the tsunami.
Initially the high pressure coolant injection (HPCI) system was primary cooling the core and at 15:00 operators activated the residual heat removal system main pump and the containment vessel spray pump at 15:07 to cool the suppression pool; all these systems failed following both AC power and DC power loss after the tsunami as the diesel ...
Slightly different versions of the ABWR are offered by GE-Hitachi, Hitachi-GE, and Toshiba. [5]In 1997 the GE-Hitachi U.S. ABWR design was certified as a final design in final form by the U.S. Nuclear Regulatory Commission, meaning that its performance, efficiency, output, and safety have already been verified, making it bureaucratically easier to build it rather than a non-certified design.