Search results
Results from the WOW.Com Content Network
The theoretical study of time travel generally follows the laws of general relativity. Quantum mechanics requires physicists to solve equations describing how probabilities behave along closed timelike curves (CTCs), which are theoretical loops in spacetime that might make it possible to travel through time. [1] [2] [3] [4]
In this example the time measured in the frame on the vehicle, t, is known as the proper time. The proper time between two events - such as the event of light being emitted on the vehicle and the event of light being received on the vehicle - is the time between the two events in a frame where the events occur at the same location.
Time dilation is the difference in elapsed time as measured by two clocks, either because of a relative velocity between them (special relativity), or a difference in gravitational potential between their locations (general relativity). When unspecified, "time dilation" usually refers to the effect due to velocity.
Relation between the speed and the Lorentz factor γ (and hence the time dilation of moving clocks). Time dilation as predicted by special relativity is often verified by means of particle lifetime experiments. According to special relativity, the rate of a clock C traveling between two synchronized laboratory clocks A and B, as seen by a ...
The Shapiro time delay effect, or gravitational time delay effect, is one of the four classic Solar System tests of general relativity. Radar signals passing near a massive object take slightly longer to travel to a target and longer to return than they would if the mass of the object were not present.
In relativity, proper time (from Latin, meaning own time) along a timelike world line is defined as the time as measured by a clock following that line. The proper time interval between two events on a world line is the change in proper time, which is independent of coordinates, and is a Lorentz scalar . [ 1 ]
In physics, relativistic mechanics refers to mechanics compatible with special relativity (SR) and general relativity (GR). It provides a non- quantum mechanical description of a system of particles, or of a fluid , in cases where the velocities of moving objects are comparable to the speed of light c .
Considering the Hafele–Keating experiment in a frame of reference at rest with respect to the center of the Earth (because this is an inertial frame [3]), a clock aboard the plane moving eastward, in the direction of the Earth's rotation, had a greater velocity (resulting in a relative time loss) than one that remained on the ground, while a ...