Search results
Results from the WOW.Com Content Network
The attenuation coefficient of a volume, denoted μ, is defined as [6] =, where Φ e is the radiant flux;; z is the path length of the beam.; Note that for an attenuation coefficient which does not vary with z, this equation is solved along a line from =0 to as:
In acoustics, Stokes's law of sound attenuation is a formula for the attenuation of sound in a Newtonian fluid, such as water or air, due to the fluid's viscosity.It states that the amplitude of a plane wave decreases exponentially with distance traveled, at a rate α given by = where η is the dynamic viscosity coefficient of the fluid, ω is the sound's angular frequency, ρ is the fluid ...
By knowing the attenuation that an ultrasound beam experiences traveling through a medium, one can adjust the input signal amplitude to compensate for any loss of energy at the desired imaging depth. [2] Ultrasound attenuation measurement in heterogeneous systems, like emulsions or colloids, yields information on particle size distribution ...
In acoustics, acoustic attenuation is a measure of the energy loss of sound propagation through an acoustic transmission medium. Most media have viscosity and are therefore not ideal media. When sound propagates in such media, there is always thermal consumption of energy caused by viscosity.
An electromagnetic wave propagating in the +z-direction is conventionally described by the equation: (,) = [()], where E 0 is a vector in the x-y plane, with the units of an electric field (the vector is in general a complex vector, to allow for all possible polarizations and phases);
In physics, the acoustic wave equation is a second-order partial differential equation that governs the propagation of acoustic waves through a material medium resp. a standing wavefield. The equation describes the evolution of acoustic pressure p or particle velocity u as a function of position x and time t. A simplified (scalar) form of the ...
The quantity nσ λ is known as the absorption coefficient (β a), a measure of attenuation with units of [cm −1]. The absorption coefficient is fundamentally the product of a quantity of absorbers per unit volume, [cm −3 ], times an efficiency of absorption (area/absorber, [cm 2 ]).
In physics, the attenuation length or absorption length is the distance λ into a material when the probability has dropped to 1/e that a particle has not been absorbed. Alternatively, if there is a beam of particles incident on the material, the attenuation length is the distance where the intensity of the beam has dropped to 1/ e , or about ...