enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Intersection number - Wikipedia

    en.wikipedia.org/wiki/Intersection_number

    In algebraic topology, the intersection number appears as the Poincaré dual of the cup product. Specifically, if two manifolds, X and Y , intersect transversely in a manifold M , the homology class of the intersection is the Poincaré dual of the cup product D M X ⌣ D M Y {\displaystyle D_{M}X\smile D_{M}Y} of the Poincaré duals of X and Y .

  3. Intersection theory - Wikipedia

    en.wikipedia.org/wiki/Intersection_theory

    On the other hand, the topological theory more quickly reached a definitive form. There is yet an ongoing development of intersection theory. Currently the main focus is on: virtual fundamental cycles, quantum intersection rings, Gromov–Witten theory and the extension of intersection theory from schemes to stacks. [2]

  4. Finite intersection property - Wikipedia

    en.wikipedia.org/wiki/Finite_intersection_property

    The finite intersection property can be used to reformulate topological compactness in terms of closed sets; this is its most prominent application. Other applications include proving that certain perfect sets are uncountable, and the construction of ultrafilters .

  5. Rokhlin's theorem - Wikipedia

    en.wikipedia.org/wiki/Rokhlin's_theorem

    In 4-dimensional topology, a branch of mathematics, Rokhlin's theorem states that if a smooth, orientable, closed 4-manifold M has a spin structure (or, equivalently, the second Stiefel–Whitney class vanishes), then the signature of its intersection form, a quadratic form on the second cohomology group (), is divisible by 16.

  6. Cantor's intersection theorem - Wikipedia

    en.wikipedia.org/wiki/Cantor's_intersection_theorem

    A simple corollary of the theorem is that the Cantor set is nonempty, since it is defined as the intersection of a decreasing nested sequence of sets, each of which is defined as the union of a finite number of closed intervals; hence each of these sets is non-empty, closed, and bounded. In fact, the Cantor set contains uncountably many points.

  7. List of general topology topics - Wikipedia

    en.wikipedia.org/wiki/List_of_general_topology...

    Continuum (topology) Extended real number line; Long line (topology) Sierpinski space; Cantor set, Cantor space, Cantor cube; Space-filling curve; Topologist's sine curve; Uniform norm; Weak topology; Strong topology; Hilbert cube; Lower limit topology; Sorgenfrey plane; Real tree; Compact-open topology; Zariski topology; Kuratowski closure ...

  8. DE-9IM - Wikipedia

    en.wikipedia.org/wiki/DE-9IM

    where ⁠ ⁠ is the dimension of the intersection (∩) of the interior (I), boundary (B), and exterior (E) of geometries a and b.. The terms interior and boundary in this article are used in the sense used in algebraic topology and manifold theory, not in the sense used in general topology: for example, the interior of a line segment is the line segment without its endpoints, and its ...

  9. Transversality (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Transversality_(mathematics)

    The notion of transversality of a pair of submanifolds is easily extended to transversality of a submanifold and a map to the ambient manifold, or to a pair of maps to the ambient manifold, by asking whether the pushforwards of the tangent spaces along the preimage of points of intersection of the images generate the entire tangent space of the ambient manifold. [2]