Search results
Results from the WOW.Com Content Network
A multiple timescales recurrent neural network (MTRNN) is a neural-based computational model that can simulate the functional hierarchy of the brain through self-organization depending on the spatial connection between neurons and on distinct types of neuron activities, each with distinct time properties.
Hopfield networks [18] [19] are recurrent neural networks with dynamical trajectories converging to fixed point attractor states and described by an energy function. The state of each model neuron i {\textstyle i} is defined by a time-dependent variable V i {\displaystyle V_{i}} , which can be chosen to be either discrete or continuous.
Long short-term memory (LSTM) [1] is a type of recurrent neural network (RNN) aimed at mitigating the vanishing gradient problem [2] commonly encountered by traditional RNNs. Its relative insensitivity to gap length is its advantage over other RNNs, hidden Markov models , and other sequence learning methods.
The human mind has different mechanisms for processing individual pieces of information and sequences. Videos are sequences of images, audio files are sequences of sound samples, music is ...
Bidirectional recurrent neural networks (BRNN) connect two hidden layers of opposite directions to the same output.With this form of generative deep learning, the output layer can get information from past (backwards) and future (forward) states simultaneously.
For many years, sequence modelling and generation was done by using plain recurrent neural networks (RNNs). A well-cited early example was the Elman network (1990). In theory, the information from one token can propagate arbitrarily far down the sequence, but in practice the vanishing-gradient problem leaves the model's state at the end of a long sentence without precise, extractable ...
An echo state network (ESN) [1] [2] is a type of reservoir computer that uses a recurrent neural network with a sparsely connected hidden layer (with typically 1% connectivity). The connectivity and weights of hidden neurons are fixed and randomly assigned.
An attractor network is a type of recurrent dynamical network, that evolves toward a stable pattern over time. Nodes in the attractor network converge toward a pattern that may either be fixed-point (a single state), cyclic (with regularly recurring states), chaotic (locally but not globally unstable) or random ( stochastic ). [ 1 ]