Search results
Results from the WOW.Com Content Network
In physics, Hooke's law is an empirical law which states that the force (F) needed to extend or compress a spring by some distance (x) scales linearly with respect to that distance—that is, F s = kx, where k is a constant factor characteristic of the spring (i.e., its stiffness), and x is small compared to the total possible deformation of the spring.
Natural frequency, measured in terms of eigenfrequency, is the rate at which an oscillatory system tends to oscillate in the absence of disturbance. A foundational example pertains to simple harmonic oscillators, such as an idealized spring with no energy loss wherein the system exhibits constant-amplitude oscillations with a constant frequency.
Classical mechanics utilises many equations—as well as other mathematical concepts—which relate various physical quantities to one another. These include differential equations, manifolds, Lie groups, and ergodic theory. [4] This article gives a summary of the most important of these.
where ω is the frequency of the oscillation, A is the amplitude, and δ is the phase shift of the function. These are determined by the initial conditions of the system. Because cosine oscillates between 1 and −1 infinitely, our spring-mass system would oscillate between the positive and negative amplitude forever without friction.
The following table gives formula for the spring that is equivalent to a system of two springs, in series or in parallel, whose spring constants are and . [1] The compliance c {\displaystyle c} of a spring is the reciprocal 1 / k {\displaystyle 1/k} of its spring constant.)
These equations represent the simple harmonic motion of the pendulum with an added coupling factor of the spring. [1] This behavior is also seen in certain molecules (such as CO 2 and H 2 O), wherein two of the atoms will vibrate around a central one in a similar manner. [1]
(Oscillatory) displacement amplitude: Any quantity symbol typically subscripted with 0, m or max, or the capitalized letter (if displacement was in lower case). Here for generality A 0 is used and can be replaced. m [L] (Oscillatory) velocity amplitude V, v 0, v m. Here v 0 is used. m s −1 [L][T] −1 (Oscillatory) acceleration amplitude A, a ...
The potential energy within a spring is determined by the equation =. When the spring is stretched or compressed, kinetic energy of the mass gets converted into potential energy of the spring. By conservation of energy, assuming the datum is defined at the equilibrium position, when the spring reaches its maximal potential energy, the kinetic ...